
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=lsta20

Download by: [177.34.245.148] Date: 23 October 2017, At: 09:55

Communications in Statistics - Theory and Methods

ISSN: 0361-0926 (Print) 1532-415X (Online) Journal homepage: http://www.tandfonline.com/loi/lsta20

Improved maximum-likelihood estimators for the
parameters of the unit-gamma distribution

Josmar Mazucheli, André Felipe Berdusco Menezes & Sanku Dey

To cite this article: Josmar Mazucheli, André Felipe Berdusco Menezes & Sanku Dey (2017):
Improved maximum-likelihood estimators for the parameters of the unit-gamma distribution,
Communications in Statistics - Theory and Methods, DOI: 10.1080/03610926.2017.1361993

To link to this article:  http://dx.doi.org/10.1080/03610926.2017.1361993

Accepted author version posted online: 09
Aug 2017.
Published online: 09 Aug 2017.

Submit your article to this journal 

Article views: 23

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=lsta20
http://www.tandfonline.com/loi/lsta20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610926.2017.1361993
http://dx.doi.org/10.1080/03610926.2017.1361993
http://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/03610926.2017.1361993
http://www.tandfonline.com/doi/mlt/10.1080/03610926.2017.1361993
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2017.1361993&domain=pdf&date_stamp=2017-08-09
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2017.1361993&domain=pdf&date_stamp=2017-08-09


COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS
, VOL. , NO. , –
https://doi.org/./..

Improvedmaximum-likelihood estimators for the parameters of
the unit-gamma distribution

Josmar Mazuchelia, André Felipe Berdusco Menezesa, and Sanku Deyb

aDepartment of Statistics, Universidade Estadual de Maringá Maringá, PR, Brazil; bDepartment of Statistics, St.
Anthony’s College, Shillong, Meghalaya, India

ARTICLE HISTORY
Received  April 
Accepted  July 

KEYWORDS
Bootstrap bias-correction;
Cox–Snell bias-correction;
Maximum-likelihood
estimators; Monte Carlo
simulation; Unit-gamma
distribution.

MATHEMATICS SUBJECT
CLASSIFICATION

ABSTRACT
Inference based on popular maximum-likelihood estimators (MLEs)
method often provide bias estimates of order O(n−1). Such bias may
significantly affect the accuracy of estimates. This observation moti-
vates us to adopt some bias-corrected technique to reduce the bias of
the MLE from order O(n−1) to order O(n−2). In this paper, we consider
the unit-gamma distribution which has some properties similar to
the Beta distribution. This distribution is obtained by transforming a
Gamma random variable but it has not been widely explored in the
literature. We adopt a “corrective” approach to derive second-order
bias corrections of the MLEs of its parameters. Additionally, we also
consider the parametric Bootstrap bias correction. Monte Carlo sim-
ulations are conducted to investigate the performance of proposed
estimators. Our results revels the bias corrections improve the accuracy
of estimates. Finally, two real data examples are discussed to illustrate
the applicability of the unit-Gamma distribution.

1. Introduction

LetX be a non negative randomvariable which follows aGammadistributionwith probability
density function (PDF) given by

f (x | α, β) = βα

�(α)
xα−1 e−β x (1)

where�(u) = ∫ ∞
0 uα−1 e−u du is the complete gamma function,α > 0 is the shape parameter

and β > 0 is the rate parameter. By considering the transformation:

Y = e−X (2)

Grassia (1977) derived a new distribution which was called by Ratnaparkhl and Mosimann
(1990) the unit-Gamma (UG) distribution, since its support is on the unit interval. The PDF
ofY is defined as:

f (y | α, β) = βα

�(α)
yβ−1 (− log y)α−1 (3)

where 0 < y < 1 and α > 0 and β > 0 are the shape parameters. The PDF (3) includes the
bell shaped (α > 1 and β > 1), the J-shaped (inverted and reversed), triangular shaped and
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2 J. MAZUCHELI ET AL.

Figure . Unit-gamma PDF considering different values for α and β .

U-shaped curves (see Grassia 1977). Figure 1 display some forms of the PDF of UG distribu-
tion considering different values for α and β .

A brief historical account of the UG distribution with its variants has been studied by
Grassia (1977). He considered the use of the UG distribution as a mixing distribution for the
parameter of the binomial distribution in some cases instead of Beta distribution with the
Poisson distribution resulting in a more convenient form of the compound distribution. The
UG distribution has been found useful in applications like inoculation approach to estimate
bacteria or virus density in dilution assays with host variability to infection and for deriving
other statistical distributions (see Grassia 1977; Ratnaparkhl and Mosimann 1990).

To the best of our knowledge, this distribution has not been widely explored in the sta-
tistical literature. Tadikamalla (1981) in his discussion paper pointed out that this distribu-
tion can be used as an alternative for Beta and Johnson SB distributions. He also investigated
some of its properties. Ratnaparkhl andMosimann (1990) studied the logarithmic andTukey’s
lambda-type transformation on the unit-Gamma distribution. Although not well known, the
UG distribution can be a potential model to be used as an alternative to the classical Beta
distribution.

Parameter estimation is of utmost importance for any probability distribution. Among
all the estimation methods, the most frequently used method is the maximum-likelihood
(Pawitan 2001; Millar 2011) method. Its underlying motivation is simple and intuitive.
For example, they are asymptotically unbiased, consistent, and asymptotically normally
distributed. However, most of these properties essentially rely on the large sample size
condition, and hence properties like unbiasedness, may not be applicable for small and
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 3

moderate sample sizes (Kay 1995). As this method gives biased estimates, researchers strive
to develop nearly unbiased estimators for the parameters of several distributions. Readers
may refer to Cordeiro et al. (1997), Cribari-Neto and Vasconcellos (2002), Saha and Paul
(2005), Lemonte et al. (2007), Giles and Feng (2009), Lagos-Àlvarez et al. (2011), Lemonte
(2011), Giles (2012a), Giles (2012b), Schwartz et al. (2013), Giles et al. (2013), Teimouri and
Nadarajah (2013), Ling and Giles (2014), Zhang and Liu (2015), Singh et al. (2015), Teimouri
and Nadarajah (2016), Reath (2016), Schwartz and Giles (2016), Wang and Wang (2017),
Mazucheli and Dey (2017) and references cited therein. To the best of our knowledge, such
bias-corrected estimators have not yet been explored for the UG distribution in the literature.

In this paper, we propose two bias correctedMLEs for the two shape parameters of the UG
distribution and illustrate their performance. First, we focus on the analytical methodology
suggested by Cox and Snell (1968), which is called “corrective” approach and derive “bias
adjusted” MLEs of second order where the bias-correction is obtained by subtracting the
bias (estimated at the MLE of the parameters) from the true value of MLEs. The second one
is based on Efron (1982) parametric Bootstrap resampling method which is also second-
order bias correction. In this method bias correction is performed numerically without
deriving analytical expression for the bias function. Readers can find another analytically
bias-corrected MLEs in the literature which is based on “preventive” approach suggested
by Firth (1993) where bias of the MLEs can be reduced to order O(n−2). However, this
method requires modification of the score vector of the log-likelihood function before
solving for the MLEs, and therefore, we have not attempted the approach in this paper. The
effectiveness of these two bias correction, in terms of both bias reduction and its impact on
root mean squared error, is compared with classical MLEs. It is apparent from the simula-
tion study that the proposed estimators are quite accurate even for small sample sizes and
are superior to classical MLEs in terms of their bias and root mean squared errors. Espe-
cially, they have simple mathematical expressions, which makes them attractive and easy to
compute.

The remainder of this paper is organized as follows. In Sections 2 and 3, we summarize
the maximum-likelihood estimation (MLEs) method and they bias-corrected estimators. A
Monte Carlo simulation experiment that compares the Cox-Snell bias adjusted estimators
with the Bootstrap bias-corrected estimators is discussed in Section 4. In Section 5, applica-
tions considering two real data sets are presented for illustrative purposes. Finally, Section 6
concludes the paper.

2. Maximum-likelihood estimation

In this section, we obtain the MLEs and the expected Fisher information matrix from com-
plete samples for the UG distribution. Let y = (y1, . . . , yn) be a random sample from (3), the
log-likelihood function, apart constant terms, can be expressed as:

l(� | y) ∝ nα logβ − n log�(α)+ β

n∑
i=1

yi + α

n∑
i=1

log(− log yi) (4)

where � = (α, β). It is well known that the MLEs α̂ and β̂ of α and β , respectively can
be obtained by the maximization of (1), or equivalently solving the following nonlinear
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4 J. MAZUCHELI ET AL.

equations:

∂

∂ α
l(� | y) = n log β − nψ(α)+

n∑
i=1

log(− log yi) (5)

∂

∂ β
l(� | y) = nβ

α
+

n∑
i=1

log yi (6)

where ψ(·) denotes the digamma function, defined as ψ(u) = d
du log�(u).

The standard statistical theory suggests that the MLEs �̂ of � is asymptotically normally
distributed with mean � and covariance matrix given by the inverse of the expected Fisher
information matrix. The expected Fisher information matrix of unit-Gamma distribution is
given by:

I(� | y) = n

⎡
⎢⎣ψ

′(α)
1
β

1
β

α

β2

⎤
⎥⎦ (7)

and the corresponding inverse is:

I−1(� | y) = 1
n

⎡
⎢⎢⎣

α

ψ ′(α) α − 1
β

ψ ′(α) α − 1
β

ψ ′(α) α − 1
ψ ′(α) β2

ψ ′(α) α − 1

⎤
⎥⎥⎦ (8)

where ψ ′(·) denotes the trigamma function, define as ψ ′(u) = d
duψ(u).

From (7) we note that α and β are not orthogonal, which means that the MLEs α̂ and β̂
are not asymptotically independent. It is also interesting to note that since I(� | y) is data
independent then it is equal to the observed Fisher information matrix.

3. Bias-correctedMLEs

In this section, we shall derive closed-form expressions for the second order biases for the
parameters of unit-Gamma distribution using the methodology proposed by Cox and Snell
(1968). These authors demonstrated that when the sample data are independent, but not
necessarily identically distributed, the bias of the s–th element of the MLE of �, �̂, can be
expressed as:

B(�̂s) =
p∑

i=1

p∑
j=1

p∑
l=1

κ si κ jl [0.5κi jl + κi j,l] + O(n−2), (9)

where s = 1, . . . , p, κ i j is the (i, j)–th elements of the inverse of the expected Fisher infor-
mation, κi jl = E[ ∂3

∂�i ∂� j ∂�l
l(� | y)] and κi j,l = E[ ∂2

∂�i ∂� j
l(� | y) ∂

∂�l
l(� | y)].

After extensive algebraic manipulations we obtain κ111 = 2 nα
β3

, κ112 = κ121 = κ211 = − n
β2

and κ222 = −nψ ′′(α) where ψ ′′(·) denotes the tetragamma function, define as ψ ′′(u) =
d
duψ

′(u). Since the Fisher information matrix is data independent, all others terms that will
be used in (9) are equal to zero. Explicitly, the second-order bias of the MLE of α and β are
written, respectively, as:

B(α̂) = 0.5α ψ ′(α)− 0.5α2 ψ ′′(α)− 1
n[α ψ ′(α)− 1]2

(10)
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 5

and:

B(β̂ ) = β[α(ψ ′(α))2 − 1.5ψ ′(α)− 0.5α ψ ′′(α)]
n[α ψ ′(α)− 1]2

. (11)

Therefore, using (10) and (11) we define the bias-corrected estimators (BCE) of α̂ and β̂
are, respectively α̂BCE = α̂ − B̂(α̂) and β̂BCE = β̂ − B̂(β̂ ).

It should be point out that α̂BCE and β̂BCE have bias of order O(n−2) so it is expected that
they have superior sampling properties relative to α̂ and β̂ . Another alternative bias-corrected
estimates we can consider the parametric Bootstrap methodology for bias reduction (PBE)
which was introduced by Efron (1982). In the case of an arbitrary parameter� the estimated
bias of �̂ is defined as:

B̂(�̂) = 1
B

B∑
j=1

�( j) − �̂ (12)

where �̂( j) is the MLE of� obtained from the j-th Bootstrap sample, generated from (3) and
using the MLE �̂ as the true value. Thus, the Bootstrap bias-corrected estimator is:

�̂PBE = 2 �̂− 1
B

B∑
j=1

�̂( j). (13)

It is noteworthy that the PBE does not involve analytical derivatives, since the bias esti-
mation is obtained numerically. However, this approach also provides a second order bias-
correction. A common feature of the two methods is that they are corrective, rather than
preventive as the method proposed by Firth (1993). Interested readers may refer to Ferrari
and Cribari-Neto (1998) for a discussion of the second order correctness of the Bootstrap
bias-correction and its relation to the Cox-Snell methodology.

4. Simulation study

In this section, we carry out Monte Carlo simulations to compare the finite-sample behavior
of theMLEs and their bias-corrected versions obtained by the Cox-Snell methodology (BCE)
and parametric Bootstrap scheme (PBE) for the parameters of UG distribution. The compar-
ison is based on the estimated bias and the estimated root mean-squared error criteria. The
Monte Carlo experiments were performed by taking samples sizes n = 10, 20, 30, 40 and 50,
α = 0.5, 1.0, 1.5 and 2.0 and β = 0.5, 1.0, 2.0, 3.0 and 5.0. For each combination of n, α and
β , we generated X as Gamma distribution and apply transformation Y = e−X . The number
of Monte Carlo replications is fixed atM = 10.000 and B = 1000 Bootstrap replicates.

All simulations were conducted in Ox Console (Doornik 2007), using the MaxBFGS func-
tion to obtain the MLEs of α and β . The results from the simulations (estimated biases and
root mean-squared errors) are reported in Tables 1–4.

FromTable 1, we observe that theMLEs ofβ are highly biased, while forα, bias ismoderate,
particularly when the sample size is small. For example, when n = 10, α = 0.5, the biases of
the MLEs of α is approximately 15%. Similar results are observed in Tables 2–4. Similarly,
when n = 10, β = 0.5, the biases of theMLEs of β is approximately 31%. Thus the estimators
α̂BCE , β̂BCE and α̂PBE , β̂BCE clearly outperform the MLEs as far as bias goes. These estimators
achieve substantial bias reduction, especially for the small and moderate sample sizes and
therefore we consider them as better alternatives of the MLEs for α and β . Similar results
for β are observed. We also observe that the bias-corrected estimates are closer to the true
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6 J. MAZUCHELI ET AL.

Table . Estimated bias (root mean-squared error) for β and α, (α = 0.5).

Estimates of β Estimates of α

β n MLE BCE PBE MLE BCE PBE

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)

.  . (.) . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) − . (.) − . (.)

.  . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)

Table . Estimated bias (root mean-squared error) for β and α, (α = 1.0).

Estimates of β Estimates of α

β n MLE BCE PBE MLE BCE PBE

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) − . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 7

Table . Estimated bias (root mean-squared error) for β and α, (α = 1.5).

Estimates of β Estimates of α

β n MLE BCE PBE MLE BCE PBE

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)

.  . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) . (.) . (.) . (.) . (.)

.  . (.) . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) − . (.) − . (.)

Table . Estimated bias (root mean-squared error) for β and α, (α = 2.0).

Estimates of β Estimates of α

β n MLE BCE PBE MLE BCE PBE

.  . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)

.  . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) . (.) − . (.) . (.) . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)

.  . (.) . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) − . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)
 . (.) − . (.) − . (.) . (.) . (.) − . (.)
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8 J. MAZUCHELI ET AL.

Table . Integrated bias squared norm.

Estimates of β Estimates of α

n MLE BCE PBE MLE BCE PBE

 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .

parameter values than the unadjusted estimates as sample size increases. Additionally, the
root-mean squared errors of the corrected estimates are smaller than those of the uncorrected
estimates. Thus, it is clear that the estimators BCE and PBE also achieve mean-squared error
reduction. Note that the root mean-squared errors decrease with n, as expected.

Finally, we assess the overall performance of each estimators with respect to the bias and
root mean-squared error through two measures proposed by Cribari-Neto and Vasconcellos
(2002). The authors called these measures as integrated bias squared and average root mean-
squared error. They are defined as follows:

IBSQ(k) =
√√√√ 1

20

20∑
h=1

(rh,k)2 and ARMSE(k) = 1
20

20∑
h=1

RMSEh,k

where rh,k andRMSEh,k are the biases and the rootmean-squared errors. The numerical results
of these quantities are presented in Tables 5 and 6.

We also observe from Tables 5 and 6 that integrated bias squared and average root mean-
squared error of the corrected estimates (BCE and PBE) are smaller than MLEs for both the
parameters α and β . Thus, these simulation results show that second-order bias reduction can
be quite successful in bringing the corrected estimates closer to their true values.

5. Applications

In this section, we shall analyze two real data applications in order to illustrate the bias-
corrected estimators proposed for the parameters of unit-Gamma distribution. For the sake of
comparison, we also fitted the Beta and Kumaraswamy distribution and their corresponding
PDFs are given by

f (x | α, β) = �(α + β)

�(α) �(β)
xα−1 (1 − x)β−1 and f (x | α, β) = α β xα−1 (1 − xα )β−1

respectively, where α > 0 and β > 0 are shape parameters.

Table . Average root mean-squared error.

Estimates of β Estimates of α

n MLE BCE PBE MLE BCE PBE

 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
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Table . MLEs and bias-corrected MLEs (standard-error)— flood level data.

Estimators α β

MLE . (.) . (.)
BCE . (.) . (.)
PBE . (.) . (.)

The first data set is fromDumonceaux and Antle (1973) and refer to 20 observations of the
maximum flood level (in millions of cubic feet per second) for Susquehanna River at Harris-
burg, Pennsylvania.

The point estimates of α and β along with standard errors obtained by all the considered
methods are summarized in Table 7 for the data set 1. We can note from the results of Table 7
that the BCE and PBE estimates of α and β are smaller than the uncorrected MLEs, which
suggest that the estimation by maximum-likelihoodmethod over estimates α and β . Further-
more, we also observe that the corrected MLEs have smaller standard errors for the parame-
ters. This means that the proposed estimators performed more efficiently than the MLE. It is
worth pointing out that all the estimations are obviously different, which indicates that even
when the sample size is small or moderate, the bias correction is still necessary because it
contains useful information.

The estimated parameters and their standard errors (in parentheses) for the Beta distribu-
tion are α̂ = 6.7564 (2.0944) and β̂ = 9.1110 (2.8515), whilst for the Kumaraswamy distri-
bution are α̂ = 3.3631 (0.6033) and β̂ = 11.7888 (5.3595).

The choice of the most appropriate distribution is based on the values of the likelihood-
based statistics such as Akaike’s Information Criterion (AIC), corrected Akaike’s Informa-
tion Criterion (AICc), consistent Akaike’s Information Criterion (CAIC) and Hannan-Quinn
Information Criterion (HQIC) and the goodness-of-fit measures like Kolmogorov-Smirnov
statistic (KS), Anderson-Darling statistic (AD) and Cramér-von Mises statistic (CvM) evalu-
ated at analytical bias-correctedMLEs for the unit-Gamma distribution. It is noteworthy that
all the above mentioned criteria favors the model in respect of the lowest values.

From Table 8 we can note that the unit-Gamma and Beta distribution shows quite similar
values to statistics considered, whereas the Kumaraswamy distribution shows the worst fit.

The second data set corresponds to twelve core samples from petroleum reservoirs that
were sampled by four cross-sections, and there are 48 observations. Each core sample was
measured for permeability and each cross-section has the following variables: the total area
of pores, the total perimeter of pores and shape. We shall analyze the shape perimeter by
squared (area) variable. It should be noted that this data can be found in R Core Team (2017),
especially on data.frame named rock.

Table . Likelihood-based statistics and goodness-of-fit measures (p-values)— flood level data.

Distribution

Statistics unit-Gamma Beta Kumaraswamy

AIC − . − . − .
AICc − . − . − .
CAIC − . − . − .
HQIC − . − . − .
KS . (.) . (.) . (.)
CvM . (.) . (.) . (.)
AD . (.) . (.) . (.)
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10 J. MAZUCHELI ET AL.

Table . MLEs and bias-corrected MLEs (standard-error) — petroleum
reservoirs data.

Estimators α β

MLE . (.) . (.)
BCE . (.) . (.)
PBE . (.) . (.)

Table . Likelihood-based statistics andgoodness-of-fitmeasures (p-values)—petroleum reservoirs data.

Distribution

Statistics unit-Gamma Beta Kumaraswamy

AIC − . − . − .
AICc − . − . − .
CAIC − . − . − .
HQIC − . − . − .
KS . (.) . (.) . (.)
CvM . (.) . (.) . (.)
AD . (.) . (.) . (.)

Table 9 lists the MLEs and the bias-correctedMLEs for α and β along with standard errors
obtained by all the considered methods. It is observed that BCE estimators provide the lowest
standard errors. We also note that the BCE and PBE estimates of α and β are smaller than the
uncorrected MLEs. Thus it is clear that the MLEs overestimates α and β . For the Beta dis-
tribution the ML estimates are α̂ = 5.9417 (1.1813) and β̂ = 21.2056 (4.3468), whereas for
Kumaraswamy distribution the MLEs are α̂ = 2.7108 (0.2911) and β̂ = 44.1196 (17.2198).
Table 10 shows the statistics used for discrimination among the distributions. We note that
the UG distribution has the lowest values of these statistics and thereby provide the best fit.

6. Conclusions

In this paper, we have adopted a “corrective” approach to derive closed-form expressions for
the second order biases of the MLEs of the parameters of the unit-Gamma distribution. In
addition, we have also considered an alternative bias-correction mechanism through Efron’s
Bootstrap resampling. The numerical evidence shows the proposed bias-corrected procedures
are very effective. The MLEs of both the parameters are positively biased in small and mod-
erate samples. Additionally, the proposed estimators (both BCE and PBE) are quite attrac-
tive because they outperform MLEs in terms of biases, integrated bias squared norm and
root mean-squared error. Results also reveal that the integrated bias squared and root mean-
squared errors of all the estimators decrease as the sample size n increases. Furthermore, we
found that Bootstrap bias correction scheme is less effective than the analytic correction in
terms of bias reduction. Thus, the analytic bias correction is recommended over the Bootstrap
alternative, except in extreme cases when the sample size is very small.
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