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summary

Distributions such as the Simplex, Johnson SB , unit-Gamma and unit-Logistic,
each with support on the unit interval (0,1), are formulated using appropriate
transformation of random variables following inverse-Gaussian mixture, Normal,
Gamma and Logistic distributions, respectively. These distributions can serve
the same purpose of the Beta and Kumaraswamy distributions. In this paper, we
propose a new two-parameter unit-Weibull distribution which is also useful for
modeling data on the unit interval (0,1). Some properties of this new distribution
are studied. Monte Carlo simulations reveal that the maximum likelihood esti-
mators are nearly unbiased and consistent. The potential of this new distribution
is illustrated using two real data sets.

Keywords and phrases: Beta distribution, Maximum likelihood estimation, Monte
Carlo simulation, unit-Gamma distribution, Weibull distribution.

2010 Mathematics Subject Classification: 60E05, 62F10.

1 Introduction

Although the Beta distribution is flexible and has been the most used to modeled data on bounded

domain, in the last years several works have been proposed new distributions on a unit interval.

We can mention the following: the Johnson SB distribution [18], the Johnson S′B distribution

[19], the Topp-Leone distribution [32], the unit-Gamma distribution [17, 30], the Kumaraswamy

distribution [21], the Arcsine distribution [2], the unit-Logistic distribution [31], the McDonald’s

generalized Beta type I distribution [23], the Simplex distribution [3], the reflected Generalized

Topp-Leone distribution [33], the Beta power distribution [10], the McDonald Arcsine distribu-

tion [11], the Log-Lindley distribution [16], the exponentiated Kumaraswamy distribution [22], the

exponentiated Topp-Leone distribution [25], the Marshall-Olkin extended Kumaraswamy [7], the



reflected generalized Topp-Leone power series distribution [9], the transmuted Kumaraswamy dis-

tribution [29], the size biased Kumaraswamy distribution [28] and the extended Arcsine distribution

[12]. It should be pointed that the majority of these distributions have more than two parameters,

which considering limited amount of data, may produce inaccurate estimates.

Here, following [17] and [30], we propose a new distribution with support on the unit-interval

(0, 1), which arises from a certain transformation on the two-parameter Weibull distribution [35]

with probability density function (p.d.f.)

g(y;α, β) = αβ yβ−1 e−αy
β

, y > 0, α, β > 0, (1.1)

where α and β are the scale and shape parameters, respectively.

Using the transformation X = e−Y , we have a new distribution on (0, 1), which we refer to as

unit-Weibull (UW) distribution. Its cumulative distribution function is given by

F (x;α, β) = exp
[
−α (− log x)β

]
, 0 < x < 1, α, β > 0, (1.2)

and the corresponding p.d.f. is

f(x;α, β) =
1

x
αβ (− log x)β−1 exp

[
−α (− log x)β

]
, 0 < x < 1, α, β > 0. (1.3)

Note that α is no longer a scale parameter, since f(αx;α, β) 6= 1
αf(x; 1, β). Special cases of the

UW distributions include: the standard uniform distribution over the interval (0,1) (α = β = 1),

the power function distribution (β = 1) and the unit-Rayleigh distribution (β = 2). Therefore,

the new distribution has connection with some well known distributions, and hence, it can be very

useful in many practical situations. Figure 1 shows some possible shapes of the p.d.f. of the UW

distribution for selected values of the parameters α and β.

The purpose of this paper are to introduce and study some properties of the UW distribution.

In Section 2, we present some features of the UW distribution. We discuss the maximum likelihood

estimation and inference of the model parameters in Section 3, where we also derived explicit

expressions for the expected Fisher information matrix. Monte Carlo simulations are conducted in

Section 4 in order to study some properties of the maximum likelihood estimators and to evaluate

the coverage probability of asymptotic confidence intervals. Section 5 shows the comparison between

the new proposed distribution and some other distributions using two real data sets. Finally, some

concluded remarks are given in Section 6.
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Figure 1: Probability density function of the UW distribution for selected values of α and β.

Note that, unlike the Beta distribution, the proposed model has closed form expression for the

quantile function. This fact can be used to introduce a quantile regression model which may be a

more flexible alternative to the classical Beta regression model [8, 15]. As discussed in the statistical

literature [20, 36, 24, 27, 4] the quantile regression analysis has been used in several contexts and its

main advantage when compared with the conditional-mean regressions, such as Beta and Simplex,

is that it provides a complete view of the conditional distribution by studying distinct quantiles.

By employing quantile regression such as conditional-median regressions, practitioners will have a

more robust model for outliers than the usual Beta regression. Another advantage lies on the fact

that if the conditional dependent variable is skewed, the median may be a more appropriate when

compared with the mean. Since the main goal of this paper is to introduce and study some of
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properties of the UW distribution, the quantile regression issue is not addressed throughout the

text.

2 Statistical Properties

In this section, we explore some statistical properties of the proposed UW distribution.

2.1 Hazard rate function

The hazard rate function of the UW distribution is given by

h(x;α, β) =
f(x;α, β)

1− F (x;α, β)
=
αβ (− log x)β−1 exp

[
−α (− log x)β

]
x (1− exp [−α (− log x)β ])

, 0 < x < 1. (2.1)

Figure 2 shows some possible shapes of the hazard rate function of the UW distribution for

selected values of the parameters α and β. Figure 2 shows increasing or bathtub shapes of the

hazard rate function of the UW distribution. These shapes are also similar to the shapes of the

Beta distribution (see Ghitany, 2004).
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Figure 2: Hazard rate function of the UW distribution for selected values of α and β.
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2.2 Moments and associated measures

The rth raw moment of the UW distribution is given by

µ′r = E(Xr) = E(e−rY ) = MY (−r) =

∞∑
n=0

(−1)n

n! αn/β
Γ

(
n

β
+ 1

)
.

The skewness and kurtosis measures can be obtained from the expressions

skewness =
µ′3 − 3µ′2µ+ µ3

σ3
,

kurtosis =
µ′4 − 4µ′3µ+ 6µ′2µ

2 − 3µ4

σ4
,

upon substituting for the raw moments.

However, for the special case β = 1, i.e. the power function distribution, we have

µ′r = E(Xr) =
α

r + α
, r = 1, 2, . . . .

In this case, the mean, variance, skewness and kurtosis, respectively, are given by

µ =
α

1 + α
, σ2 =

α

(1 + α)2(2 + α)
,

skewness =
2(1− α)

(2 + α)

√
1 +

2

α
and kurtosis =

3(2 + α)(2− α+ 3α2)

α(3 + α)(4 + α)
.

Note that, in this case, the skewness can be negative, zero, positive when α < 1, α = 1, α > 1,

respectively.

Setting α = 1 in the last expressions, i.e., the standard uniform distribution, we obtain

µ =
1

2
, σ2 =

1

12
, skewness = 0 and kurtosis =

9

5
.

Similarly, for the special case β = 2, i.e., the unit-Rayleigh distribution, we have

µ′r = E(Xr) = 1−
√
π

2
√
α
r er

2/(4α) erfc

(
r

2
√
α

)
, r = 1, 2, . . . ,

where

erfc(z) =
2√
π

∫ ∞
z

e−x
2

dx, z > 0,

is the complementary error function. In this case, the mean and variance of the UW distribution,

respectively, are

µ = 1−
√
π

2
√
α
e1/(4α) erfc

(
1

2
√
α

)
,

σ2 = 1−
√
π√
α
e1/α erfc

(
1√
α

)
−
[
1−

√
π

2
√
α
e1/(4α) erfc

(
1

2
√
α

)]2
.
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Figure 3 shows the mean, variance, skewness and kurtosis of the UW distribution as a function

of β for various values of α. This figure shows that the skewness can be negative for values β 6= 1

which means that for modeling negatively skewed data, the UW distribution will be a useful model.
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Figure 3: Mean, variance, skewness and kurtosis of the UW distribution for selected values of α
and β.

2.3 Quantile function and associated measures

The quantile function of the UW distribution is given by

Q(p) = exp

[
−
(
− log p

α

) 1
β

]
, 0 < p < 1. (2.2)

The special cases α = β = 1, β = 1 and β = 2, respectively, give Q(p) = p, Q(p) = p1/α and

Q(p) = exp(−
√
− log(p)/α). The quartiles of the UW distribution, as well as the special cases, are

obtained by setting p = 1
4 ,

1
2 ,

3
4 , respectively.
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3 Maximum Likelihood Estimation

Let x = (x1, . . . , xn) be a random sample of size n from the UW distribution with p.d.f. (1.3).

Then, the log-likelihood function of θ = (α, β) is given by

`(θ;x) =

n∑
i=0

log f(xi;θ)

= n(logα+ log β)−
n∑
i=1

log xi + (β − 1)

n∑
i=1

log (− log xi)− α
n∑
i=1

(− log xi)
β . (3.1)

likelihood estimate θ̂ of θ is obtained by solving the non-linear equations

∂`

∂α
=
n

α
−

n∑
i=1

(− log xi)
β = 0, (3.2)

and
∂`

∂β
=
n

β
+

n∑
i=1

log (− log xi)− α
n∑
i=1

(− log xi)
β log (− log xi) = 0. (3.3)

Equation (3.2) can be solved algebraically for α, giving α̂(β) =
n

n∑
i=1

(− log xi)
β

.

To obtain β̂, we substitute α̂(β) into (3.3) and solve for β. We have

g(β) =
n

β
+

n∑
i=1

log (− log xi)−
n
∑n
i=1(− log xi)

β log (− log xi)
n∑
i=1

(− log xi)
β

. (3.4)

Equation (3.4) can be solved numerically using, for example, Brent’s method [6] available in

software R [26] through the uniroot function. This method has the advantage that it does not

require computation of the derivative g′(β) and initial guess for β can be provided as an interval.

Note that (1.2) satisfies log[− logF (xi;α, β)] = logα + β log(− log xi), for i = 1, . . . , n. Thus

a plot of log[− log F̂ (x(i))] versus log(− log x(i)) would be roughly linear if a UW distribution is

appropriate, where F̂ (x(i)) is the empirical distribution function at the ordered observed value x(i).

In addition, when the plot is approximately linear, one can obtain empirical estimates of α and β by

fitting a straight line. This empirical estimate of β can be used as initial guess to solve numerically

equation (3.4).

The expected Fisher information matrix of θ = (α, β) based on a single observation is given by

I(θ) = [Iij ] =

[
−E

(
∂2 log f(xi;θ)

∂θi∂θj

)]
, i, j = 1, 2,

(3.5)

=


1

α
1
αβ (1− γ − logα)

1
αβ (1− γ − logα) 1

6β2

[
π2 + 6(1− γ − logα)2

]
 ,
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where π ' 3.141593 and γ ' 0.577216 is the Euler’s constant.

Under mild regularity conditions (see Lehmann and Casella, 1998, pp. 461–463), the asymptotic

distribution of the MLE θ̂ of θ is such that

√
n (θ̂ − θ)

D−→ N(0, I(θ)),

where
D−→ denotes convergence in distribution and I−1(θ) is the inverse of the matrix I(θ), with

I−1(θ) = [σij ] =


α2

π2

[
π2 + 6(1− γ − logα)2

]
− 6αβ

π2
(1− γ − logα)

− 6αβ

π2
(1− γ − logα)

6β2

π2

 .

The large-sample 100(1− δ)% confidence intervals for α and β, respectively, are given by

α̂± zδ/2
√
σ̂11√
n

and β̂ ± zδ/2
√
σ̂22√
n
,

where σ̂11 and σ̂22, respectively, are the estimated asymptotic variances of the maximum likelihood

estimators α̂, β̂ and zq is the upper q-th quantile of the standard normal distribution.

Although not considered in this paper, it is important to note that for a Bayesian analysis we can

use the Jeffreys invariant prior [5] for θ, given by π(θ) ∝
√
|I(θ)| where |I(θ)| is the determinant

of (10). Two alternative prior joint distributions for α and β can be found, for example, in [1].

4 Simulation Studies

In this section, we carry out Monte Carlo simulations to study the finite-sample behavior of

the MLEs and the asymptotic confidence intervals for the parameters of UW distribution. The

evaluation was performed based on the estimated bias, the estimated root mean-squared error

(RMSE) and the coverage probabilities. We set the samples sizes n = 10, 20, 50, 100, 200 and 500,

α = 0.5, 1.0, 1.5, 2.0, 3.0 and 5.0 and β = 0.5, 1.0, 1.5 and 2.0. For each combination of n, α and

β, we generated random samples from Y ∼ Weibull(α, β) and apply transformation e−Y . The

number of Monte Carlo replications was fixed at M = 10, 000. All simulations were conducted in

Ox Console [13], using the MaxBFGS function to obtain the maximum likelihood estimates of α and

β. The results are reported in Tables 1–4.
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Table 1: Estimated bias, root mean-squared and coverage probability α and β (β = 0.5).

Bias RMSE CP90% CP95%

α n α β α β α β α β

0.5

10 0.0150 0.0833 0.2458 0.1907 0.8465 0.8885 0.9201 0.9426

20 0.0044 0.0366 0.1533 0.1077 0.8784 0.8941 0.9372 0.9456

50 0.0010 0.0143 0.0949 0.0605 0.8930 0.8954 0.9450 0.9463

100 0.0008 0.0064 0.0671 0.0405 0.8920 0.9023 0.9444 0.9499

200 0.0011 0.0029 0.0477 0.0282 0.8935 0.9020 0.9452 0.9497

500 0.0002 0.0014 0.0296 0.0174 0.9004 0.9029 0.9489 0.9502

1.0

10 0.1080 0.0855 0.5083 0.1954 0.8758 0.8843 0.9358 0.9404

20 0.0402 0.0384 0.2765 0.1090 0.8825 0.8932 0.9394 0.9451

50 0.0119 0.0141 0.1568 0.0600 0.8940 0.8987 0.9455 0.9480

100 0.0059 0.0066 0.1076 0.0408 0.8971 0.8953 0.9472 0.9462

200 0.0039 0.0035 0.0754 0.0284 0.8998 0.8945 0.9486 0.9458

500 0.0017 0.0014 0.0472 0.0176 0.8989 0.8995 0.9481 0.9484

1.5

10 0.2618 0.0836 0.8520 0.1909 0.9269 0.8868 0.9628 0.9417

20 0.1092 0.0378 0.4475 0.1086 0.8961 0.8930 0.9466 0.9450

50 0.0392 0.0149 0.2371 0.0609 0.8949 0.8955 0.9460 0.9463

100 0.0180 0.0072 0.1584 0.0407 0.8984 0.8979 0.9478 0.9476

200 0.0091 0.0035 0.1088 0.0280 0.8954 0.8973 0.9463 0.9473

500 0.0032 0.0015 0.0675 0.0176 0.8996 0.8947 0.9485 0.9459

2.0

10 0.4738 0.0823 1.2696 0.1887 0.9436 0.8865 0.9714 0.9415

20 0.1993 0.0376 0.6519 0.1104 0.9129 0.8917 0.9554 0.9443

50 0.0663 0.0142 0.3275 0.0602 0.9051 0.8982 0.9514 0.9477

100 0.0290 0.0063 0.2180 0.0406 0.9003 0.8989 0.9488 0.9481

200 0.0119 0.0029 0.1491 0.0280 0.8988 0.9012 0.9481 0.9493

500 0.0036 0.0011 0.0922 0.0175 0.9048 0.8988 0.9512 0.9481

3.0

10 0.7528 0.0687 1.7562 0.1655 0.9523 0.9113 0.9759 0.9546

20 0.4328 0.0375 1.1766 0.1078 0.9357 0.9008 0.9673 0.9491

50 0.1555 0.0141 0.5872 0.0607 0.9134 0.8923 0.9557 0.9446

100 0.0708 0.0066 0.3707 0.0407 0.9066 0.8975 0.9522 0.9474

200 0.0358 0.0032 0.2515 0.0283 0.9027 0.8959 0.9501 0.9465

500 0.0154 0.0013 0.1557 0.0176 0.9022 0.8981 0.9498 0.9477

5.0

10 0.5698 0.0329 1.9063 0.1254 0.9412 0.9367 0.9702 0.9678

20 0.5397 0.0241 1.6698 0.0916 0.9464 0.9207 0.9728 0.9595

50 0.3418 0.0137 1.1562 0.0592 0.9251 0.9026 0.9618 0.9501

100 0.1743 0.0070 0.7669 0.0405 0.9049 0.8994 0.9513 0.9484

200 0.0900 0.0036 0.5160 0.0285 0.9024 0.8956 0.9499 0.9464

500 0.0313 0.0014 0.3125 0.0176 0.9053 0.9020 0.9515 0.9497
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Table 2: Estimated bias, root mean-squared and coverage probability α and β (β = 1.0).

Bias RMSE CP90% CP95%

α n α β α β α β α β

0.5

10 0.0098 0.1691 0.2337 0.3891 0.8501 0.8842 0.9220 0.9403

20 0.0004 0.0783 0.1523 0.2208 0.8765 0.8969 0.9362 0.9470

50 -0.0004 0.0290 0.0939 0.1220 0.8960 0.8995 0.9466 0.9484

100 0.0004 0.0140 0.0659 0.0821 0.8989 0.9006 0.9481 0.9490

200 0.0003 0.0064 0.0468 0.0567 0.8966 0.9008 0.9469 0.9491

500 0.0004 0.0025 0.0295 0.0352 0.9030 0.9000 0.9503 0.9487

1.0

10 0.1060 0.1751 0.5173 0.3890 0.8740 0.8853 0.9349 0.9409

20 0.0380 0.0777 0.2751 0.2187 0.8849 0.8954 0.9407 0.9463

50 0.0125 0.0301 0.1570 0.1212 0.8988 0.8990 0.9481 0.9482

100 0.0050 0.0149 0.1071 0.0819 0.9012 0.8966 0.9493 0.9469

200 0.0033 0.0068 0.0746 0.0563 0.9027 0.9001 0.9501 0.9487

500 0.0007 0.0029 0.0466 0.0353 0.9052 0.8985 0.9514 0.9479

1.5

10 0.2610 0.1754 0.8426 0.3959 0.9261 0.8829 0.9623 0.9396

20 0.1039 0.0776 0.4367 0.2227 0.9012 0.8891 0.9493 0.9429

50 0.0368 0.0288 0.2344 0.1212 0.9005 0.8948 0.9489 0.9459

100 0.0180 0.0132 0.1560 0.0813 0.9015 0.9024 0.9495 0.9499

200 0.0080 0.0063 0.1068 0.0568 0.9052 0.8933 0.9514 0.9451

500 0.0031 0.0024 0.0670 0.0355 0.9023 0.8951 0.9499 0.9461

2.0

10 0.4580 0.1584 1.2515 0.3679 0.9378 0.8901 0.9684 0.9434

20 0.2024 0.0743 0.6800 0.2176 0.9075 0.8936 0.9526 0.9453

50 0.0704 0.0296 0.3330 0.1222 0.9039 0.8935 0.9507 0.9453

100 0.0324 0.0149 0.2144 0.0813 0.9055 0.9035 0.9516 0.9505

200 0.0156 0.0086 0.1478 0.0559 0.9014 0.9044 0.9494 0.9510

500 0.0068 0.0034 0.0923 0.0347 0.9012 0.9070 0.9493 0.9524

3.0

10 0.7296 0.1363 1.7602 0.3359 0.9475 0.9092 0.9734 0.9535

20 0.4091 0.0712 1.1710 0.2143 0.9337 0.9015 0.9663 0.9495

50 0.1440 0.0264 0.5767 0.1188 0.9045 0.8979 0.9511 0.9476

100 0.0686 0.0133 0.3705 0.0820 0.9020 0.8943 0.9497 0.9457

200 0.0343 0.0063 0.2510 0.0563 0.9021 0.8986 0.9498 0.9479

500 0.0121 0.0026 0.1544 0.0349 0.9014 0.9022 0.9494 0.9498

5.0

10 0.5237 0.0614 1.9039 0.2484 0.9379 0.9396 0.9685 0.9693

20 0.5298 0.0472 1.6565 0.1820 0.9399 0.9253 0.9695 0.9619

50 0.3347 0.0272 1.1703 0.1193 0.9184 0.8989 0.9583 0.9481

100 0.1618 0.0138 0.7705 0.0820 0.9040 0.8988 0.9508 0.9480

200 0.0818 0.0072 0.5189 0.0567 0.9000 0.8959 0.9487 0.9465

500 0.0277 0.0027 0.3129 0.0354 0.8992 0.8966 0.9483 0.9469
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Table 3: Estimated bias, root mean-squared and coverage probability α and β (β = 1.5).

Bias RMSE CP90% CP95%

α n α β α β α β α β

0.5

10 0.0098 0.2541 0.2450 0.5860 0.8376 0.8851 0.9152 0.9408

20 0.0002 0.1145 0.1566 0.3309 0.8651 0.8885 0.9301 0.9426

50 0.0003 0.0399 0.0959 0.1828 0.8869 0.8910 0.9418 0.9439

100 -0.0001 0.0198 0.0667 0.1214 0.8977 0.9020 0.9475 0.9497

200 -0.0002 0.0098 0.0470 0.0846 0.8988 0.9008 0.9481 0.9491

500 0.0003 0.0040 0.0299 0.0533 0.8948 0.8969 0.9459 0.9470

1.0

10 0.1027 0.2559 0.4828 0.5822 0.8807 0.8875 0.9385 0.9421

20 0.0396 0.1162 0.2759 0.3282 0.8868 0.8929 0.9417 0.9449

50 0.0147 0.0398 0.1556 0.1806 0.8971 0.8966 0.9472 0.9469

100 0.0084 0.0184 0.1074 0.1213 0.9008 0.9022 0.9491 0.9498

200 0.0035 0.0082 0.0741 0.0829 0.9080 0.9091 0.9529 0.9535

500 0.0012 0.0036 0.0467 0.0525 0.9030 0.9010 0.9503 0.9492

1.5

10 0.2851 0.2527 0.8907 0.5729 0.9267 0.8892 0.9627 0.9430

20 0.1094 0.1138 0.4514 0.3319 0.8922 0.8909 0.9446 0.9439

50 0.0364 0.0437 0.2345 0.1830 0.8990 0.8963 0.9482 0.9467

100 0.0164 0.0220 0.1595 0.1225 0.8934 0.8956 0.9452 0.9464

200 0.0076 0.0119 0.1093 0.0852 0.8973 0.8985 0.9473 0.9479

500 0.0030 0.0047 0.0680 0.0530 0.8981 0.8988 0.9477 0.9481

2.0

10 0.4765 0.2452 1.2648 0.5596 0.9399 0.8888 0.9695 0.9428

20 0.1984 0.1108 0.6559 0.3220 0.9112 0.8953 0.9546 0.9462

50 0.0722 0.0429 0.3308 0.1806 0.9005 0.9001 0.9489 0.9487

100 0.0341 0.0207 0.2169 0.1227 0.8992 0.9011 0.9483 0.9493

200 0.0187 0.0102 0.1502 0.0850 0.8992 0.8984 0.9483 0.9478

500 0.0070 0.0040 0.0918 0.0525 0.9034 0.8989 0.9505 0.9481

3.0

10 0.7498 0.2087 1.7994 0.5119 0.9459 0.9074 0.9726 0.9526

20 0.4066 0.1074 1.1549 0.3228 0.9312 0.8945 0.9650 0.9458

50 0.1563 0.0444 0.5828 0.1823 0.9104 0.8939 0.9541 0.9455

100 0.0778 0.0224 0.3743 0.1239 0.9029 0.8999 0.9502 0.9486

200 0.0416 0.0115 0.2496 0.0850 0.9050 0.8982 0.9513 0.9477

500 0.0174 0.0048 0.1542 0.0530 0.8990 0.8990 0.9482 0.9482

5.0

10 0.5604 0.0970 1.9143 0.3714 0.9421 0.9440 0.9706 0.9716

20 0.5651 0.0757 1.6948 0.2778 0.9479 0.9183 0.9736 0.9583

50 0.3365 0.0415 1.1552 0.1783 0.9240 0.9018 0.9613 0.9497

100 0.1676 0.0202 0.7654 0.1225 0.9111 0.8968 0.9545 0.9470

200 0.0792 0.0101 0.5124 0.0847 0.9011 0.9009 0.9493 0.9492

500 0.0311 0.0037 0.3113 0.0529 0.9022 0.8974 0.9498 0.9473
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Table 4: Estimated bias, root mean-squared and coverage probability α and β (β = 2.0).

Bias RMSE CP90% CP95%

α n α β α β α β α β

0.5

10 0.0085 0.3453 0.2402 0.7956 0.8399 0.8807 0.9165 0.9385

20 0.0022 0.1565 0.1575 0.4514 0.8685 0.8855 0.9319 0.9410

50 0.0004 0.0569 0.0948 0.2427 0.8908 0.8963 0.9438 0.9467

100 0.0004 0.0280 0.0667 0.1632 0.8930 0.8983 0.9450 0.9478

200 0.0004 0.0145 0.0474 0.1129 0.8968 0.8990 0.9470 0.9482

500 -0.0001 0.0065 0.0297 0.0703 0.8967 0.9045 0.9469 0.9511

1.0

10 0.1012 0.3399 0.4895 0.7702 0.8788 0.8865 0.9374 0.9415

20 0.0401 0.1505 0.2721 0.4336 0.8879 0.8936 0.9423 0.9453

50 0.0151 0.0583 0.1575 0.2437 0.8938 0.8965 0.9454 0.9468

100 0.0075 0.0289 0.1074 0.1630 0.9021 0.9031 0.9498 0.9503

200 0.0034 0.0145 0.0753 0.1127 0.9001 0.9015 0.9487 0.9495

500 0.0013 0.0053 0.0475 0.0696 0.9013 0.9017 0.9494 0.9496

1.5

10 0.2876 0.3408 0.8786 0.7782 0.9323 0.8838 0.9656 0.9401

20 0.1169 0.1585 0.4559 0.4460 0.8911 0.8903 0.9440 0.9436

50 0.0396 0.0604 0.2367 0.2452 0.8938 0.8946 0.9454 0.9458

100 0.0199 0.0312 0.1600 0.1651 0.8960 0.8967 0.9466 0.9469

200 0.0100 0.0140 0.1098 0.1122 0.8946 0.9042 0.9458 0.9509

500 0.0039 0.0056 0.0677 0.0700 0.9016 0.9009 0.9495 0.9492

2.0

10 0.4538 0.3280 1.2459 0.7562 0.9383 0.8909 0.9687 0.9439

20 0.2002 0.1549 0.6651 0.4445 0.9123 0.8876 0.9551 0.9421

50 0.0689 0.0589 0.3319 0.2446 0.9051 0.8939 0.9514 0.9455

100 0.0356 0.0285 0.2204 0.1640 0.8983 0.9003 0.9478 0.9488

200 0.0179 0.0127 0.1506 0.1126 0.9002 0.9003 0.9488 0.9488

500 0.0065 0.0050 0.0922 0.0703 0.8989 0.8992 0.9481 0.9483

3.0

10 0.7609 0.2751 1.8108 0.6710 0.9456 0.9083 0.9724 0.9531

20 0.4247 0.1507 1.1785 0.4312 0.9321 0.8929 0.9654 0.9450

50 0.1562 0.0603 0.5821 0.2448 0.9067 0.8949 0.9522 0.9460

100 0.0699 0.0277 0.3708 0.1627 0.9058 0.8992 0.9517 0.9483

200 0.0368 0.0132 0.2496 0.1123 0.9034 0.9016 0.9505 0.9495

500 0.0148 0.0056 0.1536 0.0704 0.9032 0.9020 0.9504 0.9497

5.0

10 0.5371 0.1235 1.9087 0.5012 0.9422 0.9314 0.9707 0.9651

20 0.5459 0.0960 1.6681 0.3631 0.9468 0.9242 0.9731 0.9614

50 0.3516 0.0569 1.1766 0.2354 0.9233 0.9019 0.9609 0.9497

100 0.1844 0.0317 0.7775 0.1635 0.9071 0.8987 0.9524 0.9480

200 0.0921 0.0160 0.5167 0.1127 0.9035 0.9004 0.9505 0.9489

500 0.0352 0.0058 0.3129 0.0702 0.9021 0.9036 0.9498 0.9506
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Some of the points are very clear from the numerical experiments. Although the biases of α̂

and β̂ goes to zero as sample size increase, both parameters are positively biased. It is also seen

that the RMSE of both parameters decrease as sample size increase. Interestingly, as the value of

α increase their corresponding bias is bigger, while the bias of β decrease. Therefore, estimation

of α becomes better for lower values of α whereas the estimation of β are more accurate for large

values of α.

Also Tables 1–4 show that, as the sample size increases, the coverage probabilities for α and β

are quite close to the nominal levels. Curiously, for large values of α their coverage probability is

greater than the nominal levels, while for β the coverage probability is very close.

5 Applications

In this section we present two applications using two published data sets which demonstrate the

suitability of the proposed UW distribution. The first data set is from [14] and refer to 20 obser-

vations of the maximum flood level (in millions of cubic feet per second) for Susquehanna River

at Harrisburg, Pennsylvania. The second data set refer to 48 observations obtained from 12 core

samples from petroleum reservoirs that were sampled by 4 cross-sections. It should be noted that

this data can be found in [26] on a data.frame named as rock. These data sets are reported in

Table 5.

The proposed two-parameter UW distribution is compared with the following two-parameter

distributions on the unit interval (0,1)

(i) Beta distribution:

f(x;α, β) =
Γ(α+ β)

Γ(α) Γ(β)
xα−1 (1− x)β−1, α, β > 0.

(ii) Kumaraswamy distribution:

f(x;α, β) = αβ xα−1 (1− xα)β−1, α, β > 0.

(iii) Johnson SB distribution:

f(x;α, β) =
β√
2π

1

x (1− x)
exp

{
−1

2

[
α+ β log

(
x

1− x

)]2}
, α ∈ R, β > 0.

(iv) Unit-Logistic distribution:

f(x;α, β) =
β eα xβ−1 (1− x)β−1

[xβ eα + (1− x)β ]
2 , α ∈ R, β > 0.

(v) Simplex distribution:

f(x;α, β) =
[
2π β2{x (1− x)}3

]− 1
2 exp

{
− 1

2β2

[
(x− α)2

x (1− x)α2(1− α)2

]}
, α ∈ (0, 1), β > 0.

13



(vi) Unit-Gamma distribution:

f(x;α, β) =
βα

Γ(α)
xβ−1 (− log x)α−1, α, β > 0.

(vii) Extended Arcsine distribution:

f(x;α, β) =
αβ

π(x− x2)1/2

[
1− 2

π
arcsin

(√
x
)]α−1{

1−
[
1− 2

π
arcsin

(√
x
)]α}β−1

, α, β > 0.

(viii) Exponentiated Topp-Leone distribution:

f(x;α, β) = 2αβ (1− x) [x (2− x)]
α−1

[1− xα (2− x)α]
β−1

, α, β > 0.

Table 5: Flood level data and Petroleum reservoirs data.

Data Set I

0.26, 0.27, 0.30, 0.32, 0.32, 0.34, 0.38, 0.38, 0.39, 0.40, 0.41, 0.42, 0.42, 0.42, 0.45,
0.48, 0.49, 0.61, 0.65, 0.74

Data Set II

0.09, 0.11, 0.12, 0.12, 0.13, 0.14, 0.15, 0.15, 0.15, 0.15, 0.15, 0.16, 0.16, 0.16, 0.16,
0.17, 0.17, 0.18, 0.18, 0.18, 0.18, 0.19, 0.19, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.23,
0.23, 0.23, 0.23, 0.24, 0.25, 0.26, 0.26, 0.28, 0.28, 0.28, 0.29, 0.31, 0.33, 0.33, 0.34,
0.42, 0.44, 0.46

The maximum likelihood estimates and their corresponding standard errors for both data sets

are given in Table 6. To check the suitability of the suitability of the UW distribution and the above

eight competing distributions, we consider three goodness-of-fit tests (Kolmogorov-Smirnov statistic

(KS), Anderson-Darling statistic (AD) and Cramér-von Mises statistic (CvM)). In order to compare

the UW distributions to the above eight competing distributions, we consider the likelihood-based

statistics (Akaike’s Information Criterion (AIC) and the Bayesian information criterion (BIC)). The

results for both data sets are presented in Table 7.
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Table 6: Maximum likelihood estimate (standard-error) for α and β.

Data Set I Data Set II

Distribution α̂ β̂ α̂ β̂

UW
1.0248

(0.2399)

3.9036

(0.6806)

0.0602

(0.0236)

5.1130

(0.5754)

i
6.7569

(2.0946)

9.1117

(2.8518)

5.9422

(1.1815)

21.2070

(4.3472)

ii
3.3634

(0.6034)

11.7906

(5.3604)

2.7186

(0.2935)

44.6540

(17.5720)

iii
0.6143

(0.2438)

1.9262

(0.3045)

2.8736

(0.3269)

2.1525

(0.2197)

iv
1.3599

(0.4793)

3.5915

(0.6886)

5.2285

(0.6913)

3.8274

(0.4611)

v
0.4309

(0.0269)

1.0923

(0.1727)

0.2197

(0.0113)

1.1637

(0.1188)

vi
8.7310

(2.7099)

9.7251

(3.1068)

17.9510

(3.6307)

11.3100

(2.3197)

vii
9.1631

(1.7151)

141.9528

(126.7324)

14.1764

(1.6670)

101.1463

(52.7009)

viii
4.6064

(0.9496)

4.0442

(1.4752)

3.1358

(0.3642)

13.6413

(4.1988)

UW: unit-Weibull, i: Beta, ii: Kumaraswamy, iii: Johnson SB , iv: Unit-Logistic,
v: Simplex, vi: Unit-Gamma, vii: Extended Arcsine and viii: Exponentiated
Topp-Leone.

A close inspection of Table 7 reveals that the UW distribution outperforms the competing

distributions for both data sets, since it has the smallest AIC and BIC values. This conclusion is

also support by the probability-probability plots in Figures 4 and 5, where we can see again that

the UW provides the best fit among the considered models.
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Table 7: Goodness-of-fit measures (p-values) and likelihood-based statistics.

Data Set I

Distribution KS CvM AD AIC BIC

UW 0.1448 (0.7958) 0.0512 (0.8742) 0.3434 (0.9013) -28.3430 -26.3515

i 0.1988 (0.4082) 0.1236 (0.4847) 0.7327 (0.5303) -24.1245 -22.1330

ii 0.2109 (0.3359) 0.1636 (0.3528) 0.9322 (0.3936) -21.7324 -19.7409

iii 0.1935 (0.4424) 0.1153 (0.5187) 0.6930 (0.5627) -24.5257 -22.5342

iv 0.1391 (0.8339) 0.0547 (0.8529) 0.4804 (0.7648) -25.4724 -23.4809

v 0.2098 (0.3424) 0.1447 (0.4087) 0.7970 (0.4815) -24.3065 -22.3150

vi 0.1955 (0.4293) 0.1178 (0.5084) 0.7046 (0.5530) -24.3769 -22.3854

vii 0.1543 (0.7275) 0.0564 (0.8419) 0.3890 (0.8581) -27.8320 -25.8405

viii 0.2063 (0.3625) 0.1432 (0.4136) 0.8142 (0.4692) -23.1852 -21.1937

Data Set II

Distribution KS CvM AD AIC BIC

UW 0.1007 (0.7143) 0.0383 (0.9434) 0.2338 (0.9782) -112.2416 -108.4992

i 0.1428 (0.2819) 0.1301 (0.4577) 0.7771 (0.4971) -107.2004 -103.4580

ii 0.1533 (0.2092) 0.2060 (0.2566) 1.2892 (0.2358) -100.9831 -97.2407

iii 0.1252 (0.4390) 0.0862 (0.6587) 0.5190 (0.7267) -109.9699 -106.2275

iv 0.0979 (0.7467) 0.0557 (0.8435) 0.4054 (0.8427) -109.9063 -106.1639

v 0.1297 (0.3945) 0.0965 (0.6041) 0.5569 (0.6888) -110.1133 -106.3709

vi 0.1365 (0.3325) 0.1130 (0.5263) 0.6793 (0.5756) -108.2175 -104.4751

vii 0.1138 (0.5628) 0.0492 (0.8829) 0.2957 (0.9411) -111.9385 -108.1961

viii 0.1525 (0.2145) 0.1866 (0.2957) 1.1477 (0.2880) -102.7118 -98.9694

UW: Unit-Weibull, i: Beta, ii: Kumaraswamy, iii: Johnson SB , iv: Unit-Logistic, v: Simplex,
vi: Unit-Gamma, vii: Extended Arcsine and viii: Exponentiated Topp-Leone.

In order to discriminate between the UW distribution with each competing distribution, we

apply the Vuong likelihood ratio test of non-nested distributions [34]. The Vuong test statistic is

defined as

T =
1

ω̂2
√
n

n∑
i=1

log
f(xi |mθ̂)

g(xi |mγ̂)
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where

ω̂2 =
1

n

n∑
i=1

(
log

f(xi |mθ̂)

g(xi |mγ̂)

)2

−

[
1

n

n∑
i=1

(
log

f(xi |mθ̂)

g(xi |mγ̂)

)]2

is an estimator for the variance of
1√
n

n∑
i=1

log
f(xi |mθ̂)

g(xi |mγ̂)
, f(xi | mθ̂) and g(xi | mγ̂) are the

corresponding rival densities evaluated at the maximum likelihood estimates. It was demonstrated

that, when n → ∞, T
D→ N(0, 1). At a significance level γ%, we reject distribution equivalence if

|T | < zγ/2, where zq is the upper q-th quantile of the standard normal distribution.

The results of Voung test are given in Table 8. This table shows that UW and Extended Arcsine

distributions are equivalent for data set I. This table also shows that UW and Beta, Johnson SB ,

Unit-Logistic, Simplex, Unit-Gamma and Extended Arcsine distributions are equivalent for data

set II. However, the UW distribution has smallest AIC and BIC as shown in Table 7. Therefore

the UW distribution provides the best fit among the competing distributions.

Table 8: Observed values of Voung statistic (p-values).

Comparisons Data Set I Data Set II

UW vs Beta 2.4722 (0.0067) 1.4354 (0.0756)

UW vs Kumarasawamy 2.7266 (0.0032) 2.2934 (0.0109)

UW vs Johnson SB 2.3338 (0.0098) 0.9908 (0.1609)

UW vs Unit-Logistic 2.3340 (0.0098) 1.0926 (0.1373)

UW vs Simplex 2.0095 (0.0222) 0.9470 (0.1718)

UW vs Unit-Gamma 2.4346 (0.0075) 1.2882 (0.0988)

UW vs Extended Arcsine 1.4977 (0.0671) 0.2632 (0.3962)

UW vs Exponentiated Topp-Leone 2.5305 (0.0057) 2.0813 (0.0187)
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Figure 4: PP-Plots of the fitted distributions — Data Set I.
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Figure 5: PP-Plots of the fitted distributions — Data Set II.
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6 Conclusions

In this paper a new two-parameter distribution, called the UW distribution with support on (0, 1),

is introduced and studied in details. Maximum likelihood estimators of the parameters and their

standard errors were derived. We also proposed a starting-point strategy using the fact that UW

cumulative distribution function can be linearized. Random sample for the distribution can be

easily simulated by simple transformation of samples generated from the Weibull distribution. A

simulation study was carried out to examine the bias and root mean-squared error of the maximum

likelihood estimators of the parameters as well as the coverage probability of the confidence inter-

vals. Applications of the proposed distribution to two real data sets showed better fit than many

other well-known two-parameter distributions with support on (0,1), such as Beta, Kumaraswamy,

Johnson SB , unit-Logistic, Simplex, unit-Gamma, extended Arcsine, and exponentiated Topp-

Leone distributions. Finally, since the UW is very flexible and has a closed form expression for

the quantiles, its quantile regression model will be useful in many applications and is now under

investigation.
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[16] Gómez-Déniz, E., Sordo, M. A., Caldeŕın-Ojeda, E., 2013. The Log-Lindley distribution as an

alternative to the Beta regression model with applications in insurance. Insurance: Mathemat-

ics and Economics 54, 49–57.

[17] Grassia, A., 1977. On a family of distributions with argument between 0 and 1 obtained by

transformation of the Gamma distribution and derived compound distributions. Australian

Journal of Statistics 19 (2), 108–114.

[18] Johnson, N. L., 1949. Systems of frequency curves generated by methods of translation.

Biometrika 36 (1/2), 149–176.

[19] Johnson, N. L., 1955. Systems of frequency curves derived from the first law of Laplace. Tra-

bajos de Estadistica 5 (3), 283–291.

[20] Koenker, R., Bassett, G., 1978. Regression quantiles. Econometrica 46 (1), 33–50.

[21] Kumaraswamy, P., 1980. A generalized probability density function for double-bounded random

processes. Journal of Hydrology 46 (1), 79–88.

[22] Lemonte, A. J., Barreto-Souza, W., Cordeiro, G. M., 02 2013. The exponentiated Ku-

maraswamy distribution and its log-transform. Brazilian Journal of Probability and Statistics

27 (1), 31–53.

21



[23] McDonald, J. B., 1984. Some generalized functions for the size distribution of income. Econo-

metrica 52 (3), 647–663.

[24] Mitnik, P. A., Baek, S., 2013. The Kumaraswamy distribution: Median-dispersion re-

parameterizations for regression modeling and simulation-based estimation. Statistical Papers

54 (1), 177–192.

[25] Pourdarvish, A., Mirmostafaee, S. M. T. K., Naderi, K., 2015. The exponentiated Topp-Leone

distribution: Properties and application. Journal of Applied Environmental and Biological

Sciences 5 (78), 251–256.

[26] R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.

[27] Santos, B., Bolfarine, H., 2015. Bayesian analysis for zero-or-one inflated proportion data using

quantile regression. Journal of Statistical Computation and Simulation 85 (17), 3579–3593.

[28] Sharma, D., Chakrabarty, T. K., 2016. On size biased Kumaraswamy distribution. Statistics,

Optimization and Information Computing 4, 252–264.

[29] Shuaib, K. M., Robert, K., Lena, H. I., 2016. Transmuted Kumaraswamy distribution. Statis-

tics in Transition new series 17 (2), 183–210.

[30] Tadikamalla, P. R., 1981. On a family of distributions obtained by the transformation of the

Gamma distribution. Journal of Statistical Computation and Simulation 13 (3–4), 209–214.

[31] Tadikamalla, P. R., Johnson, N. L., 1982. Systems of frequency curves generated by transfor-

mations of logistic variables. Biometrika 69 (2), 461–465.

[32] Topp, C. W., Leone, F. C., 1955. A family of J-Shaped frequency functions. Journal of the

American Statistical Association 50 (269), 209–219.

[33] van Drop, J. R., Kotz, S., 2006. Modeling Income Distributions Using Elevated Distributions

on a Bounded Domain. In: Distribution Models Theory. World Scientific Press, Singapore,

Ch. 1, pp. 1–25.

[34] Vuong, Q. H., 1989. Likelihood ratio tests for model selection and non-nested hypotheses.

Econometrica 57 (2), 307–333.

[35] Weibull, W., 1951. A statistical distribution of wide applicability. Journal of Applied Mechanics

18, 293–297.

[36] Yu, K., Lu, Z., Stander, J., 2003. Quantile regression: applications and current research areas.

Journal of the Royal Statistical Society: Series D (The Statistician) 52 (3), 331–350.

22


