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ABSTRACT
A new two-parameter distribution over the unit interval, called the
Unit-Inverse Gaussian distribution, is introduced and studied in detail.
The proposed distribution shares many properties with other known
distributions on the unit interval, such as Beta, Johnson SB, Unit-Gamma,
and Kumaraswamy distributions. Estimation of the parameters of the
proposed distribution are obtained by transforming the data to the
inverse Gaussian distribution. Unlike most distributions on the unit
interval, the maximum likelihood or method of moments estimators of
the parameters of the proposed distribution are expressed in simple
closed forms which do not need iterative methods to compute. Applica-
tion of the proposed distribution to a real data set shows better fit than
many known two-parameter distributions on the unit interval.
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1. Introduction

In dealing with the uncertainty of a bounded phenomena, e.g. proportion of a certain
characteristic, a continuous distribution with a bounded domain is needed to describe such
phenomena. The only continuous bounded distribution discussed extensively in the literature
is the well-known Beta distribution (or the Pearson type IV distribution), whose origin can
be traced to 1676 in a letter from Sir Isaac Newton to Henry Oldenberg.

Over the years, many continuous distributions with bounded domains were introduced
and applied to model uncertainty of a bounded phenomena in different applied fields.
For example, Johnson SB distribution (Johnson 1949), Johnson S′

B distribution (Johnson
1955), Unit-Logistic distribution (Tadikamalla, and Johnson 1982), Topp-Leone distribu-
tion (Topp and Leone 1955), Unit-Gamma distribution (Consul and Jain 1971; Grassia
1977; Tadikamalla 1981; Mazucheli, Menezes, and Dey 2017), the Kumaraswamy distribu-
tion (Kumaraswamy 1980), the Arcsine distribution (Arnold and Groeneveld 1980), the
McDonald’s Generalized Beta type I distribution (McDonald 1984), the Simplex distribution
(Barndorff-Nielsen and Jørgensen 1991), the Reflected Generalized Topp-Leone distribution
(van Drop and Kotz 2006), the Beta Power distribution (Cordeiro and dos Santos 2012),
the McDonald Arcsine distribution (Cordeiro and Lemonte 2014), the log-Lindley distri-
bution (Gómez-Déniz, Sordo, and Calderín-Ojeda 2013), the Exponentiated Kumaraswamy
distribution (Lemonte, Barreto-Souza, and Cordeiro 2013), the Exponentiated Topp-Leone
distribution (Pourdarvish, Mirmostafaee, and Naderi 2015), the Marshall–Olkin Extended
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Kumaraswamy (Castellares and Lemonte 2015), the Reflected Generalized Topp-Leone Power
series distribution (Condino and Domma 2016), the Transmuted Kumaraswamy distribution
(Shuaib, Robert, and Lena 2016), the size biased Kumaraswamy distribution (Sharma, and
Chakrabarty 2016) and the Extended Arcsine distribution (Cordeiro, Lemonte, and Campelo
2016).

It should be pointed out that the majority of these distributions have more than two
parameters and their ranges depend on some of the parameters, which makes estimation
problematic.

Some of the finite range distributions in the literature are derived from standard distribu-
tions by mathematical transformation. For example, the following transformations give rise
to distributions on the unit interval:
(i) X = 1 − 1

1+exp[(Z−α)/β] , where Z ∼ N(0, 1), Z ∼ Laplace(0, 1), and Z ∼ Logistic(0, 1),
implies X ∼ Johnson SB(α, β), X ∼ Johnson S′

B(α, β), and X ∼ Unit-logistic(α, β),
respectively, where α ∈ R, β > 0.

(ii) X = e−Y , where Y ∼ Gamma(α, β), Y ∼ Exponentiated-Exponential(α, β), and Y ∼
Lindley(α, β), implies X ∼ Unit-Gamma(α, β), X ∼ Kumaraswamy(α, β), and X ∼
Log-Lindley(α, β), respectively, where α, β > 0.

Recently, Jódra and Jiménez-Gamero (2016) explored the problematic issues of estimation
of the log-Lindley distribution using the method of moments and maximum likelihood.

The aim of this paper is to propose a new distribution on the unit interval, called the Unit-
Inverse-Gaussian distribution and discuss some of its properties. These include the shapes
of the density and hazard rate functions as well as the moments and associated measures.
Maximum likelihood estimation of the model parameters and their asymptotic standard
errors are derived. Application of the model to a real data set is finally presented and compared
to the fit attained by some other well-known two-parameter distributions on the unit interval,
such as Johnson SB, Beta, Unit-Gamma and Kumaraswamy.

2. Probability density function

A random variable Y is said to have the inverse-Gaussian distribution with parameters μ and
λ if its p.d.f. is given by

fY(y) =
√

λ

2π

1
y3/2 exp

[
− λ

2μ2y
(y − μ)2

]
, y > 0, μ, λ > 0 (1)

where μ is the mean and λ is a scale parameter.
The cumulative distribution function (c.d.f.) of Y can be written as

FY(y) = �

(√
λ

y

(
y
μ

− 1
))

+ e2λ/μ �

(
−
√

λ

y

(
y
μ

+ 1
))

(2)

where �(·) is the c.d.f. of the standard normal distribution. Also, the moment generating
function (m.g.f.) of Y is given by

MY(t) = exp

[
λ

μ

(
1 −

√
1 − 2μ2t

λ

)]
, −∞ < t <

λ

2μ2 (3)

A complete guide to the Inverse-Gaussian distribution can be found in Seshadri (1999).
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Now, consider the transformation X = e−Y . Then X is said to have the Unit-Inverse-
Gaussian (UIG) distribution with p.d.f.

f (x) =
√

λ

2 π

1
x (− log x)3/2 exp

[
λ

2μ2 log x
(log x + μ)2

]
, 0 < x < 1 (4)

and

f (0) =
{ ∞ if 0 < λ

2μ2 < 1,
0 if λ

2μ2 ≥ 1, f (1) = 0

Because of the special transformation X = e−Y , many properties of the UIG random variable
X can be easily derived using properties of the IG random variable Y . For example,

(i) If X ∼ UIG(μ, λ), then E(Xr) = MY(−r) for any r = 1, 2, . . ..
(ii) If X ∼ UIG(μ, λ), then F(x) = P(X > x) = FY(− log x).

(iii) If X ∼ UIG(μ, λ), then Xc ∼ UIG(cμ, cλ) for any c > 0.
(iv) If Xi ∼ UIG(μ, λ), 1 ≤ i ≤ n, are independent and identically distributed, then∏n

i=1 Xi ∼ UIG(nμ, n2λ).
(v) If Xi ∼ UIG(μi, 2μ2

i ), 1 ≤ i ≤ n, are independent, then
∏n

i=1 Xi ∼ UIG(
∑n

i=1 μi, 2(∑n
i=1 μi

)2
).

(vi) Suppose Y|λ ∼ IG(μ, λ) where λ ∼ Gamma(α, β) with p.d.f. g(λ).
The unconditional p.d.f. of Y is given by

f ∗
Y (y) =

∫ ∞

0
fY(y|λ) . g(λ) dλ

= βα

�(α)
√

2π

1
y3/2

∫ ∞

0
λα− 1

2 exp
{
−
[
β + 1

2μ2y
(y − μ)2

]
λ

}
dλ

= �(α + 1
2 ) βα

�(α)
√

2π

1
y3/2

1[
β + 1

2μ2y (y − μ)2
]α+ 1

2
, y > 0

Now, the p.d.f. of X = e−Y is given by

f ∗(x) = �(α + 1
2 ) βα

�(α)
√

2π

1
x (− log x)3/2

1[
β − 1

2μ2 log x (log x + μ)2
]α+ 1

2
, 0 < x < 1

In particular, when α = 1, we have

f ∗(x) = βμ3

x
[−2βμ2 log x + (log x + μ)2

]3/2 , 0 < x < 1

(vii) The weighted UIG distribution with p.d.f.

fs(x) = xs

E(Xs)
f (x), 0 < x < 1, −∞ < s < ∞

where

E(Xs) = exp

[
λ

μ

(
1 −

√
1 + 2sμ2

λ

)]
, λ + 2s μ2 > 0
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is the UIG distribution with reparametrisation

μ → μs = μ

√
λ

λ + 2s μ2 , λ + 2s μ2 > 0

When s = 1, we obtain the length-biased UIG distribution.
On the other hand, some properties of the UIG can be derived without using properties of

the IG distribution. For example,
(i) the p.d.f. of the smallest order statistic Y1 = min(X1, . . . , Xn) from the UIG distribution

is given by

g1(y1) = n
[
1 − F(y1)

]n−1 f (y1), 0 < y1 < 1

(ii) the p.d.f. of the largest order statistic Yn = max(X1, . . . , Xn) from the UIG distribution
is given by

gn(yn) = n
[
F(yn)

]n−1 f (yn), 0 < yn < 1

The following theorem shows all possible shapes of the p.d.f. of the UIG distribution.

Theorem 1. Let c = λ
2μ2 and � = 9 − 8(1 − c)λ. The p.d.f. f (x) of the UIG distribution is

(i) decreasing if 0 < c < 1 and � ≤ 0,
(ii) decreasing-increasing-decreasing if 0 < c < 1 and � > 0,

(iii) unimodal if c ≥ 1.

Proof. The first derivative of f (x) is given by

f ′(x) = − f (x)

2x(log x)2 ξ(log x) (5)

where

ξ(z) = 2(1 − c)z2 + 3z + λ, −∞ < z = log(x) < 0

with

ξ(−∞) =
{ ∞ if 0 < c < 1,

−∞ if c ≥ 1, ξ(0) = λ

Let � = 9 − 8(1 − c)λ be the discriminant of the quadratic equation ξ(z) = 0. Now
(i) if 0 < c < 1 and � ≤ 0, the function ξ(z) is non-negative on (−∞, 0),

(ii) if 0 < c < 1 and � > 0, the function ξ(z) has two real zeros on (−∞, 0) and changes
sign from positive to negative to positive,

(iii) if c ≥ 1, i.e. � > 0, the function ξ(z) has a single real zero on (−∞, 0) and changes
sign from negative to positive.

Since the sign of f ′(·) is opposite to the sign of ξ(·), the theorem follows.

The conditions of Theorem 1 are inequalities on the parameters λ and μ. These inequalities
can be solved to give the following simplified conditions:

(i) λ > 9
8 and μ ≥ 2λ√

8λ−9 .

(ii) 0 < λ ≤ 9
8 and μ >

√
λ
2 or λ > 9

8 and
√

λ
2 < μ < 2λ√

8λ−9 .



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5

0.
00

0.
75

1.
50

2.
25

3.
00

0.00 0.25 0.50 0.75 1.00
x

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n
μ = 0.5

μ = 1.0

μ = 2.0

μ = 5.0

λ = 0.32

0.
00

0.
75

1.
50

2.
25

3.
00

0.00 0.25 0.50 0.75 1.00
x

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

λ = 2

0.
00

22
.5

0
45

.0
0

67
.5

0
90

.0
0

0.00 0.25 0.50 0.75 1.00
x

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

λ = 100

0.
00

22
.5

0
45

.0
0

67
.5

0
90

.0
0

0.00 0.25 0.50 0.75 1.00
x

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

λ = 200

Figure 1. Probability density function of UIG distribution for selected values of μ and λ.

(iii) λ > 0 and μ ≤
√

λ
2 .

Figure 1 shows the three possible shapes of the p.d.f. of the UIG distribution. The unimodal
and decreasing shapes are also possessed by the Beta distribution while the decreasing-
increasing-decreasing shape is not. On the other hand, of course, the Beta distribution also
includes anti-unimodal and increasing density shapes.

3. Hazard rate function

Since the survival function (s.f.) of the UIG distribution is given by

S(x) = P(X > x) = FY(− log x)

= �

(√
λ

− log x

(− log x
μ

− 1
))

+ e2λ/μ �

(
−
√

λ

− log x

(− log x
μ

+ 1
))

(6)
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it follows that the hazard rate function (h.r.f.) of the UIG distribution is given by

h(x) = f (x)

S(x)

=
√

λ
2 π

1
x (− log x)3/2 exp

[
λ

2μ2 log x (log x + μ)2
]

�
(√

λ
− log x

(− log x
μ

− 1
))

+ e2λ/μ �
(
−
√

λ
− log x

(− log x
μ

+ 1
)) , 0 < x < 1

(7)

To determine the shapes of the h.r.f. h(x), we use the results of Ghitany (2004) and Gupta
and Warren (2001). These results are sufficient conditions in terms of the function η(x) =
−f ′(x)/f (x). In particular, the following results will be used in the proof of Theorem 2 below.
(R1) If η(x) is increasing, then h(x) is increasing (Ghitany 2004).
(R2) If η(x) is decreasing-increasing (anti-unimodal), f (0) = ∞ and f (1) = 0, then h(x) is

anti-unimodal (Ghitany 2004).
(R3) Suppose η(x) is increasing-decreasing-increasing and η′(x) = 0 has two zeros x1 < x2.

If h(x) increases in a neighbourhood of zero and h′(x1) ≥ 0 (h′(x1) < 0), then h(x) is
increasing (increasing-decreasing-increasing) (Gupta and Warren 2001).

(R4) Suppose η′(x) = 0 has three zeros x1 < x2 < x3. The h.r.f. h(x) has at most three
critical points. Specifically, h(x) has at most one critical point in each of the intervals
[0, x1], [x1, x2] and [x2, x3] (Gupta and Lvin 2005).

Note that h(0) = f (0) and h(1) = η(1). Also, h′(x) = h(x)[h(x) − η(x)].
The following theorem shows all possible shapes of the h.r.f. of the UIG distribution.

Theorem 2. Let c = λ
2μ2 ,

φ(z) = 2(1 − c)z3 + 3z2 + (λ + 3)z + 2λ, −∞ < z < 0

z0 =
⎧⎨⎩ −λ+3

6 if c = 1
1

2(c−1)

[
1 −

√
1 + 2

3 (c − 1)(λ + 3)

]
if c > 1

and z1 is the smallest zero of φ(z). The h.r.f. h(x) of the UIG distribution is
(i) anti-unimodal if 0 < c < 1,

(ii) increasing if (a) c ≥ 1 and φ(z0) ≥ 0 or (b) c ≥ 1, φ(z0) < 0 and h′(ez1) ≥ 0,
(iii) increasing-decreasing-increasing if c ≥ 1, φ(z0) < 0 and h′(ez1) < 0.

Proof. From Equation (5), we have

η(x) = − f ′(x)

f (x)
= 1

2x

[
2(1 − c) + 3

log x
+ λ

(log x)2

]
(8)

with

η(0) =
{ ∞ if 0 < c < 1,

−∞ if c ≥ 1, η(1) = ∞

Therefore,

η′(x) = −1
2x2 (log x)3 φ(log x)
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where
φ(z) = 2(1 − c)z3 + 3z2 + (3 + λ)z + 2λ, −∞ < z = log(x) < 0

with

φ(−∞) =
{ −∞ if 0 < c < 1,

∞ if c ≥ 1, φ(0) = 2λ

Clearly, the sign of η′(·) is the same sign of φ(·).
(i) For 0 < c < 1, let D = 1 − 2

3 (1 − c)(λ + 3) and

z∗
1 = −1 − √

D
2(1 − c)

, z∗
2 = −1 + √

D
2(1 − c)

are the critical points of φ(z) where φ(z∗
1) > 0 and φ(z∗

2) < 0.
If (a) D ≤ 0 or (b)D > 0, φ(z∗

1) ≤ 0 or (c) D > 0, φ(z∗
2) ≥ 0, then φ(z) has a unique

zero and changes sign from negative to positive. Therefore, η′(x) also has a unique zero and
changes sign from negative to positive, i.e. η(x) is anti-unimodal.

Since f (0) = ∞ and f (1) = 0, the h.r.f. h(x) is also anti-unimodal, see result (R2) above.
Now, we investigate the shape of the h.r.f. h(x) when (d) D > 0, φ(z∗

1) > 0, φ(z∗
2) < 0.

In this case, φ(z) has three zeros z01 < z02 < z03. Therefore, η′(x) = 0 has also three zeros
x1 = ez01 < x2 = ez02 < x3 = ez03 , i.e. x1 < x2 < x3 are the three critical points of η(x).

Since � = 9[1 − 8
9 (1 − c)λ] > 9[1 − 2

3 (1 − c)(λ + 3)] = 9D > 0, the function η(x) has
exactly two zeros x01 = ey1 < x02 = ey2 where

y1 = − 3 + √
�

4(1 − c)
, y2 = − 3 − √

�

4(1 − c)
Note that

y1 < − 3 + √
9D

4(1 − c)
< − 3 + √

9D
6(1 − c)

= z∗
1 , y2 > − 3 − √

9D
4(1 − c)

> − 3 − √
9D

6(1 − c)
= z∗

2

and

φ(y1) = − � + 3
√

�

4(1 − c)
< 0, φ(y2) = 2λ

√
�

3 + √
�

> 0

Since φ(z) is increasing on (−∞, z∗
1) with φ(z01) = 0, we have y1 < z01 < z∗

1 . Similarly,
since φ(z) is increasing on (z∗

2 , 0) with φ(z03) = 0, we have z∗
2 < z03 < y2.

It follows that x01 = ey1 < x1 = ez01 where η(x01) = 0 and η(x1) < 0. Similarly, we have
x3 = ez03 < x02 = ey2 where η(x3) < 0 and η(x02) = 0.

Since η(0) = ∞, η(x01) = 0, η(x1) < 0, η(x3) < 0, η(x02) = 0, and η(1) = ∞, we also
have η(x2) < 0. In summary, η(x) < 0 for all x ∈ (x01, x02).

Now, since h′(x) = h(x)[h(x) − η(x)] > 0 for all x ∈ [x1, x3], h(x) is increasing on each of
the intervals [x1, x2] and [x2, x3], i.e. h(x) has no critical points on these intervals, see result
(R4) above.

Finally, since h(0) = h(1) = ∞ for 0 < c < 1, it follows that h(x) has an absolute
minimum on [0, x1], i.e. h(x) is anti-unimodal.
(ii) If c ≥ 1, the function φ(z) has an absolute minimum at the point z0 given by

z0 =
⎧⎨⎩ −λ+3

6 if c = 1,
1

2(c−1)

[
1 −

√
1 + 2

3 (c − 1)(λ + 3)

]
if c > 1.
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(iia) If φ(z0) ≥ 0, then φ(z), and hence η′(x), is non negative. That is, η(x) is increasing
implying that h(x) is increasing, see result (R1) above.
(iib and iii) If φ(z0) < 0, then the equation φ(z) = 0 has two roots z1 < z2 on (−∞, 0). Since,
in this case, φ(−∞) = ∞ and φ(0) = 2λ, it follows that φ(z), and hence η′(x), changes sign
from positive to negative to positive. That is, η(x) is increasing-decreasing-increasing with
critical points x1 = ez1 < x2 = ez2 .

Since, in this case, h(x) increases in a neighbourhood of zero, it follows that h(x) is
increasing (increasing-decreasing-increasing) if h′(x1) ≥ 0 (h′(x1) < 0), see result (R3)
above.

For Theorem 2, condition (i) can be replaced by the condition:

λ > 0 and μ >

√
λ

2
Also, condition (ii) when c = 1 can be replaced by the condition:

9 − 6
√

2 < λ < 9 + 6
√

2 and μ =
√

λ

2
The remaining conditions of Theorem 2 cannot be expressed in simple conditions on the

parameters λ and μ because of the implicit nature of the smallest root z1 and the complex
nature of the derivative h′(ez1) of the hazard rate function h(·).

Figure 2 shows the possible shapes of the h.r.f. of the UIG distribution. The anti-unimodal
and increasing shapes are also possessed by the Beta distribution (see Ghitany (2004)) while
the increasing-decreasing-increasing shape is not.

Remark.
(i) The cases {λ = 0.32, μ = 1, 2, 5} and {λ = 2, μ = 2, 5} in Figure 2 imply that 0 < c < 1,

D < 0, φ(z) has a unique zero, and η(x) has also a unique critical point.
(ii) The case {λ = 0.32, μ = 0.5} in Figure 2 implies that c = 0.64, D = 0.203, z∗

1 =
−2.015, z∗

2 = −0.763, φ(z∗
1) = 0.240, φ(z∗

2) = −0.466. In this case, φ(z) has three
zeros z01 = −2.399, z02 = −1.525, z03 = −0.243. Moreover, η(x) has also three
critical points x1 = 0.091, x2 = 0.218, x3 = 0.784 with η(x1) = −2.615, η(x2) =
−2.549, η(x3) = −3.957.

The UIG distribution on the unit interval is naturally suitable for modeling rates and
proportions. An extended version of the UIG distribution using the transformation T = νX,
where ν is known positive value, can be useful for modeling continuous distributions with
bounded support (0, ν). For example, T represents the failure time (in days) of a device during
a warranty period of ν = 365 days, or the time (in minutes) of the first kick goal scored by a
team in a professional soccer match of ν = 90 minutes (see Meintanis (2007)).

4. Moments and associated measures

The rth raw moment of the UIG distribution is given by

μ′
r = E(Xr) = E(e−rY) = MY(−r) = exp

[
λ

μ

(
1 −

√
1 + 2rμ2

λ

)]
, r = 1, 2, . . .
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Figure 2. Hazard rate function of UIG distribution for selected values of μ and λ.

In particular, the mean and variance of the UIG distributions, respectively, are given by

μ′
1 = exp

[
λ

μ

(
1 −

√
1 + 2μ2

λ

)]

σ 2 = exp

[
λ

μ

(
1 −

√
1 + 4μ2

λ

)]
− exp

[
2λ

μ

(
1 −

√
1 + 2μ2

λ

)]
The skewness and kurtosis measures can be obtained from the expressions

Skewness = μ′
3 − 3μ′

2μ
′
1 + μ′3

1
σ 3

Kurtosis = μ′
4 − 4μ′

3μ
′
1 + 6μ′

2μ
′2
1 − 3μ′4

1
σ 4

upon substituting for the first four raw moments μ′
r, r = 1, 2, 3, 4.
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Figure 3. Contour plots of the mean, variance, skewness and kurtosis of UIG distribution.

Figure 3 shows the contours of the mean, variance, skewness and kurtosis of the UIG
distribution. This figure shows that the skewness can be negative which is useful in modeling
left skewed data.

The first and second raw moments can be used to find the method of moments estimators
μ̃ and λ̃ of the parameters μ and λ by solving the equations:

exp

⎡⎣ λ̃

μ̃

⎛⎝1 −
√

1 + 2jμ̃2

λ̃

⎞⎠⎤⎦ = mj, j = 1, 2

where mj = 1
n
∑n

i=1 xj
i, j = 1, 2, are the first two sample moments. It follows that λ̃ =

l1l2(l1−l2)
2(l2−2l1) and μ̃ = l1l2(l1−l2)

l22−2l21
where lj = log(mj), j = 1, 2. Note that l2 < l1 < 0, l1 − l2 > 0

and l2−2l1 = log(m2
m2

1
) > 0. Therefore, λ̃ > 0. However, l22 −2l21 = (l2−√

2l1)(l2+√
2l1) > 0

if and only if l2−
√

2l1 = log
(

m2

m
√

2
1

)
< 0, i.e. m2 < m

√
2

1 . Therefore, μ̃ > 0 only if m2 < m
√

2
1 .

In the next section, simple closed form estimates of the parameters μ and λ are obtained
by the transformation Y = − log X and fitting the IG distribution.
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5. Estimation using inverse Gaussian distribution

Let x1, x2, . . . , xn be a random sample of size n from UIG distribution with p.d.f. (4). Let
yi = − log xi, i = 1, 2, . . . , n. Then, y1, y2, . . . , yn is a random sample from IG distribution
with p.d.f. (1).

(a) Maximum likelihood estimation

From Seshadri (1999), the distributions of the maximum likelihood estimators (MLEs) of μ

and λ, respectively, are given by

μ̂MLE = Y

λ̂MLE = 1
1
n
∑n

i=1

(
1
Yi

− 1
Y

)
where Y = 1

n
∑n

i=1 Yi is the sample mean. Note that the MLEs μ̂ and λ̂ are simple and do not
require any iterative methods for their calculations.

Also, μ̂ and λ̂ are independent and their respective distributions are given by

μ̂MLE ∼ IG(μ, nλ)

λ̂MLE ∼ nλ

χ2
(n−1)

, n > 1

Moreover,

E(μ̂MLE) = μ

E(̂λMLE) = nλ

n − 3
, n > 3

That is, μ̂MLE (̂λMLE) is an unbiased (biased) estimator of μ (λ). An unbiased estimator̂̂λMLE
of λ is given by ̂̂λMLE = n − 3

n
λ̂MLE, n > 3.

The variances of the above MLEs are given by

Var(μ̂MLE) = μ3

nλ

Var(̂λMLE) = 2 n2λ2

(n − 3)2(n − 5)
, n > 5

Var(̂̂λMLE) = 2 λ2

n − 5
, n > 5

(b) Method of moments estimation

The method of moments estimators (MMEs) of μ and λ are given by

μ̂MME = Y

λ̂MME = Y3

S2
y

where S2
y = 1

n
∑n

i=1(Yi − Y)2 is the sample variance.
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6. Data analysis

Here, we provide an application of real data set to demonstrate the flexibility and applicability
of the proposed distribution over many well known distributions on the unit interval. The data
used in this section correspond to the Municipal Human Development Index (MHDI) of the
1188 cities in 2010 located in the the South region of Brazil. They were extracted from the
Atlas of Brazil Human Development database available at http://atlasbrasil.org.br/2013/en/.
Brazil was one of the first countries to adopt and calculate the HDI for all the municipalities
of the country, thus creating the sub-national index - Municipal Human Development Index
(MHDI) in 1998. The MHDI adjusts the HDI to the municipal reality and reflects specific
and regional challenges in Brazilian human development. To measure the level of human
development of municipalities, the MHDI assesses the same dimensions as the global HDI –
health, education and income. HDI data from the Brazil were also analyzed by da Paz, Bazán,
and Balakrishnan (2016), da Paz, Bazán, and Milan (2017) and da Paz (2017) considering
alternatives to Beta distribution.

For this data set, we fit the following two-parameter distributions defined on the unit
interval:
(1) Beta distribution:

f1(x) = 1
B(α, β)

xα−1 (1 − x)β−1, α, β > 0

where B(α, β) is the beta function.
(2) Johnson SB distribution (Johnson 1949):

f2(x) = β√
2 π

1
x (1 − x)

exp

{
−1

2

[
α + β log

(
x

1 − x

)]2
}

, α ∈ R, β > 0

(3) Unit-Gamma distribution (Grassia 1977):

f3(x) = βα

�(α)
xβ−1 (− log x)α−1, α, β > 0

where �(α) is the gamma function.
(4) Kumaraswamy distribution (Kumaraswamy 1980):

f4(x) = α β xα−1 (1 − xα)β−1, α, β > 0

(5) Unit-Logistic distribution (Tadikamalla, and Johnson 1982):

f5(x) = β eα xβ−1 (1 − x)β−1[
xβ eα + (1 − x)β

]2 , α ∈ R, β > 0

(6) Complementary Beta distribution (Jones 2002):

f6(x) = B(α, β) [I−1
x (α, β)]1−α [1 − I−1

x (α, β)]1−β , α, β > 0

where I−1
x (α, β) is the inverse of the regularized incomplete beta function Ix(α, β) =

Bx(α,β)
B(α,β)

, 0 < x < 1, in which Bx(α, β) is the lower incomplete beta function.
(7) Exponentiated Topp-Leone distribution (Pourdarvish, Mirmostafaee, and Naderi 2015):

f7(x) = 2 α β (1 − x) [x (2 − x)]α−1 [1 − xα (2 − x)α
]β−1 , α, β > 0

http://atlasbrasil.org.br/2013/en/
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(8) Unit-Inverse-Gaussian distribution:

f8(x) =
√

β

2π

1
x(− log x)3/2 exp

[
β

2α2 log x
(log x + α)2

]
, α, β > 0

Table 1 shows the maximum likelihood estimates (standard errors) of α and β for all
models, where we also have the value of the objective function evaluated at the estimates.
From these results we can see that the unit-IG and Johnson SB have the largest value of the
log-likelihood, implying better fit.

In Table 2 we report the test statistics and p-values of three goodness-of-fit tests of the
competing distributions.

Among the considered two-parameter distributions on the unit interval, Table 2 shows
that the UIG distribution has the smallest test statistic (largest p-value) of the Kolmogorov-
Smirnov, Cramér-von Misses and Anderson-Darling goodness-of-fit tests. Thus, we can
conclude that the UIG distribution provides the best fit among the distributions considered
here. This conclusion is also supported by the histogram-density plots in Figure 4.

The asymptotic distribution of the MLE θ̂ = (μ̂, λ̂) of θ = (μ, λ) is given by
√

n(̂θ − θ)
D−→ N2(0, I−1

1 (θ))

where D−→ denotes convergence in distribution, N2(·, ·) denotes the bivariate normal distri-
bution, and

I1(θ) = diag
(

λ

μ3 ,
1

2λ2

)
is the expected Fisher information matrix about θ based on a single observation.

For a differentiable function g(·), using the �-method, we have
√

n
(
g(̂θ) − g(θ)

) D−→ N
(

0, d�(θ) I−1
1 (θ) d(θ)

)
Table 1. Parameter estimates (standard errors) of the competing distributions.
Distribution α̂ (S.E.) β̂ (S.E.) log-likelihood

Beta 84.1881(3.4536) 33.7066(1.3766) 2099.4284
Johnson SB −4.5143(0.0970) 4.8839(0.1002) 2100.5994
Unit-Gamma 33.3926(1.3633) 98.6669(4.0587) 2099.3503
Kumaraswamy 18.8766(0.4075) 348.3218(41.8774) 2071.5714
Unit-Logistic −7.9124(0.1970) 8.5468(0.2052) 2090.5050
Complementary Beta 0.0371(0.0009) 0.0929(0.0023) 2093.4244
Exponentiated Topp-Leone 44.1611(1.0460) 26.7063(2.0359) 2095.0692
Unit-IG 0.3384(0.0017) 11.0346(0.4528) 2100.1204

Table 2. Test statistics (p-values) of three goodness-of-fit tests of the competing distributions.

Distribution Goodness-of-fit test

Kolmogorov–Smirnov Cramér-von Misses Anderson–Darling

Beta 0.0285 (0.2902) 0.1144 (0.5187) 0.7676 (0.5050)
Johnson SB 0.0248 (0.4598) 0.0651 (0.7818) 0.4466 (0.8016)
Unit-Gamma 0.0285 (0.2876) 0.1164 (0.5104) 0.7814 (0.4946)
Kumaraswamy 0.0428 (0.0259) 0.4773 (0.0455) 3.4865 (0.0156)
Unit-Logistic 0.0370 (0.0772) 0.1837 (0.3015) 1.3954 (0.2036)
Complementary Beta 0.0361 (0.0898) 0.1647 (0.3478) 1.3281 (0.2234)
Exponentiated Topp-Leone 0.0269 (0.3585) 0.1190 (0.4997) 0.8051 (0.4773)
Unit-IG 0.0208 (0.6817) 0.0475 (0.8915) 0.3219 (0.9208)
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Figure 4. Histogram and density curves of the competing distributions.

where � denotes the transpose of a vector and

d�(θ) = (d1(θ), d2(θ)) =
(

∂g(θ)

∂μ
,
∂g(θ)

∂λ

)
This asymptotic result can be used to make statistical inference about functions of the
population parameters. For example, let

μMHDI = g(θ) = exp

[
λ

μ

(
1 −

√
1 + 2μ2

λ

)]
be the average MHDI index of the population of all cities in South Brazil. For our data, the
MLE of μMHDI is μ̂MHDI = g(̂θ) = 0.7141 with estimated standard error (S.E.)

Ŝ.E.(μ̂MHDI) =
√

1
n

[
d2

1 (̂θ)
μ̂3

λ̂
+ d2

2 (̂θ) 2̂λ2
]

= 0.0012

Now a 95% confidence interval of μMHDI is

μ̂MHDI ± 1.96 Ŝ.E.(μ̂MHDI) ≡ (0.7117, 0.7165)

Hypothesis testing about μMHDI can also be performed. For example, for testing

H0 : μMHDI ≤ 0.71 versus H1 : μMHDI > 0.71

the test statistic is

z = μ̂MHDI − 0.71
Ŝ.E.(μ̂MHDI)

= 3.4167

with p-value of the test P(Z > 3.4167) = 0.0003, rejecting H0 at significance level α = 0.05.
Finally, we compare the average MHDI of South region to other regions (North, Northeast,

Central-West, Southeast) of Brazil as well as to the grand average of Brazil. Table 3 shows the
point estimates and confidence intervals of the average MHDI of all regions of Brazil, using the
UIG distribution. This table also show that South region has the best average MHDI among
all regions of Brazil.
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Table 3. Point estimate (S.E.) and confidence interval of μMHDI by region.
Region μ̂MHDI (S.E.) 95% C.I. of μMHDI

South 0.7141 (0.0012) (0.7117, 0.7165)
Southeast 0.6990 (0.0013) (0.6965, 0.7015)
North 0.6081 (0.0029) (0.6024, 0.6138)
Northeast 0.5909 (0.0011) (0.5887, 0.5931)
Central-West 0.6895 (0.0017) (0.6862, 0.6928)

Brazil 0.6594 (0.0010) (0.6574, 0.6614)

7. Concluding remarks

A new two-parameter distribution over the unit interval, called the Unit-Inverse Gaussian
distribution, is introduced and studied in detail. Unlike other distributions on the unit
interval, the maximum likelihood estimates of the parameters are expressed in simple closed
forms which do not need iterative methods to compute. Application of the proposed distri-
bution to a real data set shows better fit than many known two-parameter distributions on
the unit interval, such as Beta, Johnson SB, Unit-Gamma, Unit-Logistic and Kumaraswamy
distributions. We hope that our approach will be found useful to the data analysts seeking
more appropriate models on the unit interval.
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