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ABSTRACT

Maximum likelihood estimators usually have biases of the order O(n™")
for large sample size n which are very often ignored because of the fact
that they are small when compared to the standard errors of the param-
eter estimators that are of order O(n~"/?). The accuracy of the estimates
may be affected by such bias. To reduce such bias of the MLEs from order
O(n™") to order O(n~2), we adopt some bias-corrected techniques. In
this paper, we adopt two approaches to derive first-order bias correc-
tions for the the maximum likelihood estimators of the parameters of
the Inverse Weibull distribution. The first one is the analytical method-
ology suggested by Cox and Snell (1968) and the second is based on the
parametric Bootstrap resampling method. Monte Carlo simulations are
conducted to investigate the performance of these methodologies. Our
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results reveal that the bias corrections improve the accuracy as well as
the consistency of the estimators. Finally, an example with a real data set
is presented.

1. Introduction

The Weibull distribution has been adopted as a successful model for many product failure
mechanisms because of its flexibility and wide range of applicability. Extensive work has been
done on this distribution, both from the frequentist and Bayesian points of view, see for
example the excellent review by Johnson, Kotz, and Balakrishnan (1995) and Kundu (2008),
for some references. The limitation of this model is its incapability to accommodate non-
monotone hazard rates such as bathtub shape, the unimodal (upside-down bathtub) or mod-
ified unimodal shape which are common in human mortality, machine life cycles, biological
and medical studies. Therefore, if the empirical study indicates that the hazard function of
the underlying distribution is not monotone, and it is unimodal, then inverse Weibull (IW)
distribution may be used to analyze such data. Extensive work has been done on the IW distri-
bution, see for example Keller and Kanath (1982), Calabria and Pulcini (1989), Erto (1989),
Calabria and Pulcini (1990), Calabria and Pulcini (1992), Jiang, Ji, and Xiao (2003), Mah-
moud, Sultan, and Amer (2003), Maswadah (2003), Kundu and Howlader (2010), Nassar and
Abo-Kasem (2017) and the references cited therein. The Inverse Weibull also known as the
Fréchet distribution is named after French mathematician Maurice René Fréchet, who devel-
oped it in the 1920s as a maximum value distribution, which is also known as the extreme
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value distribution of type II (Fréchet 1928). The IW distribution has the ability to model fail-
ure rates which are quite common in reliability and biological studies. Kotz and Nadarajah
(2000) in their book, described this distribution and discussed its wide applicability in differ-
ent spheres such as accelerated life testing, natural calamities, horse racing, rainfall, queues in
supermarkets, sea currents, wind speeds, track race records and so on. The IW distribution is
also a limiting distribution of the largest order statistics.

The random variable X has Inverse Weibull distribution if its cumulative distribution func-
tion (c.d.f.) is defined as:

F(x |, B) =exp |:— (%)ﬂ}, x>0 (1)

where © > 0 and B > 0 are scale and shape parameters, respectively. The corresponding
probability density function (p.d.f.) is given by:

B
Fecl ) =Bl x P exp [— (%) ] . )

If B = 1, the p.d.f. of IW becomes the inverse exponential distribution, and when 8 = 2,
the IW p.d.f. is referred to as the inverse Rayleigh distribution.

Many authors have discussed the situations where the data shows the upside-down bathtub
shape hazard rates. For example: Efron (1988) analyzed the data set in the context of head
and neck cancer, in which the hazard rate initially increased, attained a maximum and then
decreased before it stabilized owing to a therapy. Bennett (1983) analyzed lung cancer trial
data which showed that failure rates were unimodal in nature. Langlands et al. (1979) have
studied the breast carcinoma data and found that the mortality reached a peak after some
finite period, and then declined gradually.

Choice of estimation methodology is important when estimating parameters from any
probability distribution. Among all the classical estimation methods, the most frequently used
method is the maximum likelihood estimation method (Pawitan 2001). Its success stems from
its many desirable properties including consistency, asymptotic efficiency, invariance property
as well as its intuitive appeal. However, it is well known that in finite samples the maximum
likelihood estimator (MLE) not possess any desirable sampling properties. In particular, the
MLE is often biased for small sample sizes. The determination of such bias can be complicated,
as the likelihood equations (first-order conditions) that determine the maximum of the likeli-
hood function are often highly non-linear, and do not possess a closed-form solution. There-
fore, it is important to derive closed-form expressions for the first-order biases of estimators
in some classes of models which can be used in practical applications in order to evaluate
the accuracy of these estimators and also to define estimators with smaller biases. Several
researchers strive to develop nearly unbiased estimators for the parameters of several distri-
butions. Readers may refer to Cribari-Neto and Vasconcellos (2002), Saha and Paul (2005),
Lemonte, Cribari-Neto, and Vasconcellos (2007), Giles (2012), Schwartz, Godwin, and Giles
(2013), Giles, Feng, and Godwin (2013), Ling and Giles (2014), Schwartz and Giles (2016),
Wang and Wang (2017), Mazucheli and Dey (2018), Mazucheli, Menezes, and Dey (2017a),
Mazucheli, Menezes, and Nadarajah (2017b), Reath, Dong, and Wang (2018) and references
cited therein.

In this paper, we adopt two bias corrected techniques to reduce the bias of the MLE from
order O(n™') to order O(n~?) for the two parameter IW distribution and illustrate their
performance. First, we discuss the analytical methodology suggested by Cox and Snell (1968),
which is called “corrective” approach and derive “bias adjusted” MLEs of second order where
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the bias-correction is done by subtracting the bias (estimated at the MLEs of the parameters)
from the true value of the MLEs. Secondly, as an alternative to the analytically bias-corrected
MLEs, we consider the bias-corrected MLEs through Efron (1982) parametric Bootstrap
resampling method which is also second-order bias correction. In this method bias correction
is performed numerically without deriving analytical expression for the bias function. In
this paper, we are focusing on corrective approach for bias correction and thus we have not
attempted the preventive approach suggested by Firth (1993). The effectiveness of the sug-
gested two bias correction techniques, in terms of both bias reduction and its impact on root
mean squared error, is compared with classical MLEs. The simulation study of the proposed
bias corrected estimators reveal that these estimators are quite accurate even for small sample
sizes and are superior to classical MLEs in terms of their bias and root mean squared errors.

The remainder of this paper is organized as follows. In Sections 2 and 3, we summarize
the maximum likelihood estimators and its bias-corrected version. A Monte Carlo simulation
experiment are conducted in Section 4 to compare the performance among the Cox-Snell bias
adjusted estimators, bootstrap-based bias-adjusted estimators and the uncorrected MLEs. In
Section 5, an application to real data set is presented for illustrative purposes. Finally, Section
6 concludes the paper.

2. Maximum likelihood estimation

In this section, we discuss the maximum likelihood estimators (MLEs) of the inverse Weibull
distribution and their asymptotic properties.

Letx = (x1, ..., x,) be arandom sample from the Inverse Weibull distribution with p.d.f.
(1). Then, the log- likelihood function for ® = (i, ) can be written as:

n n ﬂ
W
0@ |x)=nlogh+nplogu—(B+1) 3 logx - (—) e
The MLE of v and B may be found by solving the following non-linear equations:
n B
el ="L Ry (2) o @
0 mo X

d n . SN 0
%Z(le):E—i—nlog,u—Zlogxi—Z(;i) log(;j):O. (5)

i=1 i=1
The expected Fisher information matrix is given by:

m’+6y’—12y+6 11—y

_ 6 B2 "
IO |x)=n 12y B2 (6)
T =
Then, its inverse is defined as:
6p° 6p(y—1)
. 1 2 2
CIE R o 7)
nleéeu(ly—1) wp (" +6y"—12y +6)
2 B2

where m >~ 3.141593 and y =~ 0.577216 is the Euler’s constant.
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3. Bias-corrected MLEs

In this section, we describe the two “corrective” approach to bias-correction, both of which
reduces the biases of the MLEs of inverse Weibull distribution to the second order magni-
tude. We consider the methodology introduced by Cox and Snell (1968) and the parametric
Bootstrap resampling method (Efron 1982).

3.1. Cox-snell methodology

Let £(© | x) denote the log-likelihood function of a p-dimensional parameter vector ® based
on a sample of observations x. We shall assume some regularity conditions on the behavior
of the log-likelihood function (see Cox and Hinkley, 1974).

The joint cumulants of the derivatives of £ are given by:

92 ¢ e 92 ¢ 3¢
I,‘j =E| — . Iijl =E| ———— and Iij,l =E .
10,00, 10,00,00, 10,00, \90,

fori, j,I =1,..., p. All expression above are assumed to be to the order O(n).

Cox and Snell (1968) showed that when the sample data are independegt, but not necessar-
ily identically distributed, the bias of the r-th element of the MLE of ®, ®, can be expressed
as:

P p
B©,)=>" >3 FI05L;+I;]+0n>), 8)
=1 j=1 I=1
where r = 1, ..., p and I denotes the the (i, j)-th element of the inverse of the expected

Fisher information matrix.
After extensive algebraic manipulation, we are able to obtain the following expressions for
the Inverse Weibull distribution:

1111=2/33 [46@)+ (- D@’ +2y° 4y —4)],
n
Lipy=I,=0L)=———[7"+6y>-24y +12],
6up
n
1122=1122=1221=M—[,3()’_3)—)/‘1‘1]
L nB -3
m=
I
We also have:
Iy, = ——— n2y+2y3—En2—10y2+8y+4§(3)
11,1 2/33 3 ,
1112=1121=1211=L[7T2+6J/2—24)/+12]
’ ’ To6up
npB-y)
112,2 = 121,2 R
7
n—1(y—1)
Ip,=— 3 ,
U
L _nB-Dp
22= T
u

where £ (s) = )"~ & is the Riemann’s Zeta function.
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Thus, the second-order bias of the maximum likelihood estimator of  and 8 are defined,
respectively, as:

1.379530691 B

B(it) = ——— )
n
and:
~ 0.3698145391 0.5543324494
B@) = 1. n’;j ) (10)

Using (9) and ( 10) we deﬁne the blas corrected estimators (BCE) of it and ,8 to be, respec-
tively fipce = L — B(,u) and ,BBCE = ,3 B(,B) It is to be noted that -y and ﬁBCE have bias
of order O(n~ %) and is expected that they have superior sampling properties relative to &

and 8.

3.2. Parametric bootstrap

An alternative approach to obtain bias-corrected estimators is the parametric Bootstrap
resampling method (PBE), pioneered by Efron (1982). In particular, this method uses the
MLE:s of the data to generate pseudo-random samples from the distribution to estimate the
bias and then subtract the bias from the MLE.

Table 1. Estimated bias (root mean-squared error) for 1« and 8, (u = 0.5).

Estimator of 1 Estimator of 8

B n MLE BCE PBE MLE BCE PBE

05 10 0.1785(0.6171)  —0.0243(0.3870) —0.0308 (0.5086) 0.0866 (0.1984) 0.0057
20 0.0777(0.3182) —0.0083(0.2519)  —0.0191(0.2537)  0.0380 (0.1101) 0.0009

30 0.0499(0.2339) —0.0044(0.2011)  —0.0092(0.1989) 0.0246 (0.0826) 0.0005

40 0.0368(0.1919) —0.0029(0.17177)  —0.0055 (0.17709)  0.0181(0.0694)  0.0002

50 0.0298 (0.1676) —0.0016 (0.1532)  —0.0032 (0.1526)  0.0144 (0.0606)  0.0002

10 10 0.0539(0.2122) 0.0047(0.1803)  —0.0018 (0.1779 0.1651(0.3798) 0.0044
20  0.0261(0.1338) 0.0022 (0.1233) 0.0008 (0.1228)  0.0727 (0.2170)  —0.0013

30  0.0171(0.1060) 0.0014 (0.1003) 0.0007 (0.1002)  0.0484 (0.1660) 0.0002

40  0.0125(0.0891) 0.0008 (0.0855) 0.0005 (0.0855)  0.0364 (0.1400) 0.0006 (0.1305)  —0.0011(0.1304)

50 0.0096 (0.0781) 0.0003 (0.0756) 0.0001(0.0756)  0.0294 (0.1217) 0.0010 (0.1149)  —0.0001 (0.1149)

15 10 0.0267 (0.1270) 0.0022(0.1157)  —0.0001(0.1149)  0.2551(0.5962) 0.0130 (0.4647) —0.0414 (0.4551)
20  0.0128 (0.0836 0.0006 (0.0797) 0.0000 (0.0797)  0.1186 (0.3326) 0.0069 (0.2894) —0.0044 (0.2874)

30 0.0079 (0.0659) —0.0003 (0.0639) —0.0005(0.0639) 0.0741(0.2475) 0.0017 (0.2253)  —0.0030 (0.2249)

40 0.0056 (0.0566) —0.0005(0.0553) —0.0007 (0.0553) 0.0574 (0.2061) 0.0037 (0.1911) 0.0011(0.1909)

)

( ( ( ( 01539)  —0.0131(0.1492)
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
50 0.0045(0.0503) —0.0004(0.0494) —0.0004(0.0494) 0.0438(0.1801)  0.0013(0.1699) —0.0004 (0.1698
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (

0.0962) —0.0029 (0.0956)
0.0752)  —0.0011(0.0750)
0.0647) —0.0007 (0.0646)
0.0573) —0.0004 (0.0572)
0.2949) —0.0322 (0.2866)
0.1904) —0.0089 (0.1892)
0.1515)  —0.0030 (0.1510)

)
)
)
)

)
20 0.0075(0.0618) —0.0004 (0.0598) —0.0007(0.0597) 0.1478 (0.4323) —0.0003(0.3783) —0.0153 (0.3762)
—0.0003 (0.0482) —0.0004 (0.0482) 0.0952(0.3310)  —0.0011(0.3024) —0.0075 (0.3016)
—0.0002 (0.0418) —0.0003 (0.0418)  0.0710 (0.2738)  —0.0005 (0.2553) ~ —0.0039 (0.2551)
—0.0002 (0.0374) —0.0002 (0.0374)  0.0561(0.2398) —0.0006 (0.2267) —0.0027 (0.2267,
)

30 0.0051(0.0493
40  0.0038 (0.0425
50  0.0031(0.0379
3.0 10 0.0108 (0.0603; 0.0020 (0.0575) 0.0014 (0.0574)  0.5055 (1.1442) 0.0219 (0.8851)  —0.0335(0.9758
20 0.0052(0.0404)  0.0007 (0.0394)  0.0006 (0.0394) 0.2267 (0.6551) 0.0041(0.5722)  —0.0180 (0.5703
30 0.0032(0.0324) 0.0002 (0.0319) 0.0001(0.0319)  0.1447 (0.4968) 0.0001(0.4534) —0.0096 (0.4523
40  0.0021(0.0282) —0.0002(0.0279) —0.0002 (0.0279 (
50 0.0017(0.0252) —0.0001(0.0249) —0.0002 (0.0250 (
50 10 0.0051(0.0348)  0.0005(0.0337) —0.0003(0.0338) 0.6721(1.5873)  —0.1104 (1.2445) 0.0851(1.5757)
20  0.0025 (0.0243) 0.0002 (0.0239)  0.0000(0.0239) 0.3627(1.0698)  —0.0072 (0.9370 0.0013 (1.0129)
(
(
(

(
(
(
(
20 10 0.0165(0.0929 0.0009 (0.0872) —0.0003 (0.0869) 0.3341(0.7746 0.0121(0.6025) —0.0558 (0.6028)
(
(
(
(

0.115 (0.4121) 0.0042 (0.3830) —0.0010 (0.3824
0.0890 (0.3605) 0.0038 (0.3397) 0.0005 (0.3394

)
)
)
)

)
30 0.0015(0.0197) —0.0001(0.0195) —0.0001(0.0195) 0.2383(0.8317) —0.0026 (0.7602) —0.0104 (0.7788)
40  0.0011(0.0168) —0.0001(0.0167) —0.0001(0.0167)  0.1765 (0.6905) —0.0020 (0.6445) —0.0092 (0.6486)
50 0.0008 (0.0148) —0.0001(0.0147) —0.0001(0.0148) 0.1384 (0.6015) —0.0034 (0.5692) —0.0086 (0.5695)
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For a parameter vector ® the estimated bias of © is defined as:

&)
)

(11)

(J) -

I\Mb:

where @( j) is the MLE of ® obtained from the j-th Bootstrap sample, generated from (2)
and using the maximum likelihood estimate @ as the true value. Thus, the Bootstrap bias-
corrected estimator is:

B
~ ~ 1 ~
Op: =20-2 3 ©

j=1

(- (12)

It is noteworthy that the PBE does not involve analytical derivatives. Also, this approach
provides an unbiased estimator to second order.

4. Simulation study

In this section, we carry out Monte Carlo simulations in order to compare the finite-sample
behavior of the MLEs of ;« and 8 and their bias corrections proposed in Section 3. The com-
parison is based on the empirical biases and root mean squared error criteria.

We have taken sample sizes n = {10, 20, 30, 40, 50} and the parameters are fixed at u =
{0.5,1.0, 1.5, 2.0} and B8 = {0.5, 1.0, 1.5, 2.0, 3.0, 5.0}. For each combination of n, « and

Table 2. Estimated bias (root mean-squared error) for ; and 8, (u =

1.0).

Estimator of

Estimator of 8

B n MLE BCE PBE MLE BCE PBE
05 10 0.3330(1.1055)  —0.0617 (0.7143) 0.0259 (1.0328)  0.0869 (0.1985) 0.0060 (0.1540)  —0.0135 (0.1499)
20 0.1544(0.6298) —0.0173(0.4993) —0.0259 (0.5373) 0.0380 (0.1101) 0.0009 (0.0962) —0.0030 (0.0956)
30 0.0998 (0.4677) —0.0088 (0.4021) —0.0166 (0.4049) 0.0246 (0.0826) 0.0005 (0.0752)  —0.0012 (0.0750)
40 0.0736(0.3838) —0.0058(0.3435) —0.0110(0.3414)  0.0181(0.0694)  0.0002 (0.0647) —0.0007 (0.0646)
50 0.0596 (0.3351)  —0.0031(0.3064) —0.0063(0.3058) 0.0144 (0.0606)  0.0002 (0.0573) —0.0004 (0.0572)
1.0 10 0.0998 (0.4247) 0.0022 (0.3634) —0.0087(0.3648)  0.1705 (0.3902) 0.0090 (0.3026)  —0.0278 (0.2935)
20 0.0463(0.2616) —0.0009 (0.2416)  —0.0037 (0.2405)  0.0765 (0.2160) 0.0023 (0.1881)  —0.0054 (0.1868)
30 0.0309(0.2055) —0.0004 (0.1948) —0.0017 (0.1945)  0.0482 (0.1632) 0.0000 (0.1488)  —0.0032 (0.1484)
40  0.0218(0.1744)  —0.0015(0.1677)  —0.0021(0.1677)  0.0367 (0.1386) 0.0010 (0.1291)  —0.0008 (0.1288)
50 0.0167(0.1535) —0.0019 (0.1488) —0.0023 (0.1487)  0.0290 (0.1211) 0.0006 (0.1143)  —0.0005 (0.1143)
15 10 0.0545(0.2574) 0.0052 (0.2348) 0.0008 (0.2332)  0.2420 (0.5699) 0.0017 (0.4448) —0.0526 (0.4359)
20 0.0267 (0.1673) 0.0021(0.1592) 0.0010 (0.1591)  0.1085(0.3267)  —0.0025(0.2869) —0.0138 (0.2853)
30 0.0184(0.1343) 0.0019 (0.1298) 0.0014 (0.1298)  0.0675 (0.2453) —0.0046 (0.2251)  —0.0093 (0.2247)
40  0.0138 (0.1142) 0.0014 (0.1113) 0.0011(0.1113) ~ 0.0495(0.2037) —0.0040 (0.1909) —0.0065 (0.1908)
50  0.0115(0.1013) 0.0016 (0.0991) 0.0015(0.0992) 0.0387(0.1783)  —0.0038 (0.1693) —0.0054 (0.1693)
20 10 0.0328(0.1856) 0.0015(0.1737)  —0.0008 (0.1731)  0.3385 (0.7688) 0.0159 (0.5953)  —0.0518 (0.5970)
20 0.0149(0.1226) —0.0009 (0.1187)  —0.0015(0.1187)  0.1531(0.4402)  0.0046 (0.3842) —0.0105 (0.3816)
30 0.0096 (0.0984) —0.0010(0.0963) —0.0012(0.0963) 0.0983 (0.3311) 0.0018 (0.3016) —0.0047 (0.3008)
40 0.0078 (0.0851) —0.0002 (0.0836) —0.0004 (0.0836) 0.0740 (0.2749) 0.0025 (0.2557)  —0.0010 (0.2553)
50 0.0055(0.0753) —0.0009 (0.0744) —0.0010 (0.0744) 0.0592 (0.2420) 0.0024 (0.2282) 0.0003 (0.2280)
3.0 10 0.0199(0.1190) 0.0024 (0.1137) 0.0011(0.1135) ~ 0.5080 (1.1583) 0.0240 (0.8977) —0.0340 (0.9783)
20 0.0097 (0.0808)  0.0007 (0.0790)  0.0004 (0.0790) 0.2269 (0.6670) 0.0043 (0.5840) —0.0178 (0.5823)
30 0.0064(0.0650)  0.0003(0.0640)  0.0002 (0.0640) 0.1438 (0.4943) —0.0008 (0.4512) —0.0104 (0.4500)
40 0.0046 (0.0560)  0.0000 (0.0554)  0.0000(0.0554)  0.1031(0.4078) —0.0039 (0.3810) —0.0090 (0.3808)
50 0.0039(0.0499)  0.0002 (0.0495) 0.0002 (0.0495) 0.0822(0.3579) —0.0029 (0.3387) —0.0062 (0.3385)
50 10 0.0103(0.0702) 0.0011(0.0680) —0.0007 (0.0681) 0.6668 (1.5825)  —0.1150 (1.2425) 0.1084 (1.6167)
20 0.0056 (0.0489) 0.0010 (0.0481) 0.0006 (0.0481)  0.3680 (1.0721)  —0.0023 (0.9375) 0.0134 (1.0272)
30 0.0036 (0.0391) 0.0005 (0.0386)  0.0004 (0.0386) 0.2355(0.8243) —0.0053 (0.7536)  —0.0131(0.7716)
40  0.0026 (0.0336) 0.0002 (0.0333) 0.0002 (0.0334)  0.1760 (0.6940) —0.0025 (0.6482) —0.0100 (0.6520)
50 0.0020 (0.0298) 0.0001 (0.0296) 0.0001(0.0296)  0.1411(0.6139) —0.0007 (0.5810) —0.0057 (0.5820)
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B, we simulate pseudo-random samples from inverse Weibull distribution using the inverse
transform method, that is x = (xy, ..., x,) is generated from:

1 —log(—1 ;
x,-=exp|:'3 OB K ;g( ogu):|’ i=1,...,n

where u; are random numbers from a standard uniform distribution.

The number of Monte Carlo replications are fixed at M = 10, 000 and B = 1000 Boot-
strap replicates. All simulation studies are carried out in Ox Console (Doornik, 2007) and
the MaxBFGS function is used to obtain the maximum likelihood estimates. The results are
reported in Tables 1-4.

From Table 1, we observe that the biases of wpcg, psr and Bgpcr, Bppe are consistently
smaller than the biases of y;r and Byrg; the biases of MLEs appear positive for both the
parameters; the magnitude of the biases of u and g appears largest for the unadjusted ML
estimates for every #; in most of the cases, the biases of all the estimators of ;« and 8 generally
approach to zero as n increases; Similar results are observed in Tables 2-4. The estimators
ace> Bece and pppe, Bppp clearly outperform the estimators ppp and Byrg as far as bias
goes. Thus the estimators based on analytical and parametric Bootstrap resampling methods
achieve substantial bias reduction, especially for the small and moderate sample sizes and
therefore we consider them as better alternatives of the MLEs for 1 and 8. We also observe
that the bias-corrected estimates are closer to the true parameter values than the unadjusted
estimates as sample size increases. Additionally, the root mean squared errors of the corrected

Table 3. Estimated bias (root mean-squared error) for  and 8, (u = 1.5).

Estimator of Estimator of 8

B n MLE BCE PBE MLE BCE PBE

05 10 0.4467(1.4789) —0.1248 (0.9730) 0.1028 (1.4776) ~ 0.0875 (0.1988) 0.0064 (0.1540)  —0.0137 (0.1503)
20 0.2296(0.9334) —0.0274(0.7416)  —0.0071(0.8697) 0.0381(0.1101) 0.0010 (0.0962)  —0.0031(0.0959)
30 0.1497(0.7016) —0.0132(0.6032) —0.0176 (0.6313)  0.0246 (0.0826) ~ 0.0005 (0.0752)  —0.0012 (0.0751)
40  0.1104(0.5757) —0.0087(0.5152) —0.0149 (0.5176)  0.0181(0.0694)  0.0002 (0.0647) —0.0007 (0.0646)
50 0.0893(0.5027) —0.0047(0.4596) —0.0093(0.4591) 0.0144 (0.0606)  0.0002 (0.0573) —0.0004 (0.0572)

1.0 10  0.1520(0.6272) 0.0070 (0.5399) —0.0042(0.5530)  0.1705 (0.3855) 0.0090 (0.2982)  —0.0281(0.2887)
20 0.0737(0.3934)  0.0030(0.3631)  —0.0011(0.3618)  0.0794 (0.2196) 0.0049 (0.1907)  —0.0027 (0.1894)
30 0.0453(0.3061) —0.0014(0.2904) —0.0032(0.2901)  0.0514 (0.1661) 0.0030 (0.1507)  —0.0001 (0.1502)
40 0.0343(0.2611) —0.0007 (0.2508)  —0.0016 (0.2508)  0.0363 (0.1376) 0.0006 (0.1281)  —0.0012 (0.1280)
50 0.0277(0.2316) —0.0003 (0.2243) —0.0008 (0.2243) 0.0290 (0.1210) 0.0006 (0.1142)  —0.0005 (0.1142)

15 10 0.0774 (0.3748) 0.0041(0.3418) —0.0022 (0.3400)  0.2519 (0.5802) 0.0102 (0.4507) —0.0444 (0.4406)
20 0.0349(0.2499) —0.0018(0.2386) —0.0035(0.2382)  0.1142 (0.3261) 0.0029 (0.2844) —0.0084 (0.2827)
30 0.0223(0.1982) —0.0023(0.1922) —0.0030(0.1922)  0.0722(0.2482) —0.0001(0.2265) —0.0048 (0.2260)
40 0.0165(0.1712)  —0.0019 (0.1673)  —0.0024 (0.1673)  0.0547 (0.2070 0.0011(0.1927)  —0.0015 (0.1925)

50 0.0145(0.1531) —0.0002(0.1502) —0.0004 (0.1502)  0.0428 (0.1806 0.0002 (0.1706) ~ —0.0015 (0.1705)

( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (
( ( ( ( (

20 10 0.0509 (0.2769) 0.0039 (0.2586) 0.0003 (0.2576)  0.3437 (0.7829 0.0204 (0.6067) —0.0474 (0.6075)
20  0.0255(0.1856) 0.0016 (0.1791) 0.0008 (0.1790)  0.1519 (0.4338 0.0035(0.3783)  —0.0116 (0.3759)
30 0.0159(0.1486) —0.0001(0.1452) —0.0004 (0.1452)  0.0959 (0.3274) —0.0005 (0.2987) —0.0069 (0.2979)
40  0.0119(0.1271)  —0.0002 (0.1249) —0.0004 (0.1249)  0.0708 (0.2740) —0.0006 (0.2555) —0.0040 (0.2554)
50 0.0099 (0.1138) 0.0002 (0.1121) 0.0000 (0.1122) ~ 0.0535(0.2385)  —0.0031(0.2261)  —0.0053 (0.2260)
3.0 10 0.0300(0.1814) 0.0036 (0.1734) 0.0016 (0.1730)  0.5026 (1.1656) 0.0194 (0.9068) —0.0356 (0.9994)
20  0.0145(0.1222) 0.0010 (0.1193) 0.0005(0.1193)  0.2205(0.6523)  —0.0017 (0.5715)  —0.0245 (0.5670)
30  0.0105 (0.0973) 0.0014 (0.0956) 0.0012(0.0957)  0.1356 (0.4866) —0.0086 (0.4459) —0.0181(0.4448)
40 0.0074(0.0833)  0.0005 (0.0823) 0.0005 (0.0823)  0.0998 (0.4089) —0.0071(0.3829)  —0.0123 (0.3825)
50 0.0058(0.0740)  0.0003 (0.0733) 0.0003 (0.0733)  0.0818 (0.3606) —0.0032 (0.3415)  —0.0065 (0.3417)
50 10 0.0176 (0.1061) 0.0037 (0.1025) 0.0011(0.1027)  0.6409 (1.5625)  —0.1373 (1.2361) 0.0674 (1.5790)
20 0.0083 (0.0724) 0.0013 (0.0711) 0.0008 (0.0713)  0.3651(1.0775)  —0.0049 (0.9438)  0.0066 (1.0257)
30 0.0053(0.0583)  0.0005 (0.0577) 0.0004 (0.0578)  0.2433 (0.8333) 0.0022 (0.7604) —0.0061(0.7766)
40 0.0040(0.0504)  0.0005(0.0499)  0.0004 (0.0500) 0.1759 (0.6844) —0.0026 (0.6386) —0.0099 (0.6429)
50 0.0035(0.0447)  0.0006 (0.0444)  0.0006 (0.0444) 0.1364 (0.5975) —0.0053 (0.5657)  —0.0105 (0.5663)




COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 2053

Table 4. Estimated bias (root mean-squared error) for i and 8, (u = 2.0).

Estimator of 1

Estimator of 8

B n MLE BCE PBE MLE BCE PBE

05 10 0.5138(1.7660)  —0.2165 (1.1873) 0.1287 (1.7503)  0.0883 (0.1992) 0.0072 (0.1541)  —0.0132 (0.1505)
20 0.2967(1.2102)  —0.0433(0.9674) 0.0325(1.1999)  0.0382 (0.1101) 0.0011(0.0961) —0.0033 (0.0960)
30 0.1987(0.9317) —0.0182(0.8014) —0.0078 (0.8714)  0.0246 (0.0826) 0.0005 (0.0752)  —0.0013 (0.0752)
40 0.1472(0.7677)  —0.0116 (0.6869) —0.0136 (0.7082)  0.0181(0.0694)  0.0002 (0.0647) —0.0007 (0.0647)
50  0.1191(0.6702) —0.0062(0.6127) —0.0108 (0.6173)  0.0144 (0.0606)  0.0002 (0.0573) —0.0004 (0.0572)

1.0 10 0.2023(0.831) 0.0074 (0.7135) 0.0044 (0.7515)  0.1669 (0.3836) 0.0059 (0.2978)  —0.0312 (0.2896)

20  0.0905 (0.5229)
30 0.0583(0.4119)
40  0.0440 (0.3515)
50  0.0329 (0.3105)
0.1036 (0.5053)
20 0.0482(0.3338)
30  0.0317(0.2668)
40  0.0231(0.2300)
50 0.0189 (0.2053)
20 10 0.0755(0.3740)
20 0.0396 (0.2519)
30  0.0247(0.2002)
40  0.0185(0.1716)
50  0.0144 (0.1520)
3.0 10 0.0397(0.2356)
20 0.0194 (0.1611)
30  0.0129 (0.1297)
40  0.0090 (0.1117)
50 0.0077 (0.1002)
50 10 0.0206(0.1393)
20 0.0099 (0.0969)
30 0.0061(0.0784)
40 0.0049 (0.0677)
50 0.0040 (0.0604)

(

(

(

(

(

(
—0.0040 (0.4841)
—0.0042 (0.391)
—0.0027 (0.3379)
—0.0044 (0.3011)

0.0064 (0.4614)
—0.0007 (0.3182)
—0.0010 (0.2584)
—0.0014 (0.2247)
—0.0008 (0.2015)

0.0124 (0.3489)

0.0075 (0.2426)

0.0033 (0.1953)

0.0024 (0.1684)

0.0015 (0.1497)

0.0048 (0.2251)

0.0014 (0.1572)

0.0008 (0.1277)
—0.0001(0.1104)

0.0004 (0.0992)

0.0024 (0.1351)

0.0006 (0.0953)
—0.0001(0.0776)

0.0001 (0.0672)

0.0002 (0.0600)

(

(

(

(

(

(
—0.0092 (0.4831)
—0.0066 (0.3909)
—0.0040 (0.3376)
—0.0052 (0.3010)
—0.0013 (0.4612)
—0.0029 (0.3175)
—0.0020 (0.2584)
—0.0020 (0.2248)
—0.0010 (0.2014)

0.0076 (0.3473)
0.0065 (0.2423)
0.0028 (0.1952)
0.0021(0.1685)
0.0013 (0.1497)
0.0023 (0.2248)
0.0008 (0.1573)
0.0006 (0.1277)
—0.0002 (0.1104)
0.0003 (0.0993)
—0.0014 (0.1353)
—0.0001 (0.0955)
—0.0004 (0.0776)
0.0001(0.0672)
0.0002 (0.0600)

(
(
(
(
(
(
0.0742 (0.2161)
0.0479 (0.1637)
0.0348 (0.1371)
0.0280 (0.1200)
0.2610 (0.5912)
0.1187 (0.3333)
0.0748 (0.2496)
0.0571(0.2083)
0.0443 (0.1797)
0.3334(0.7797)
0.1457 (0.4371)
0.0966 (0.3338)
0.0718 (0.2808)
0.0566 (0.2458)
0.5037 (1.1263)
0.2311(0.6558)
0.1504 (0.4934)
0.1120 (0.4103)
0.0887(0.3613)
0.6831(1.5818)
0.3734 (1.0780)
0.2461(0.8283)
0.1787 (0.6845)
0.1401(0.5962)

(
(
(
(
(
(

0.0001 (0.1890)
—0.0003 (0.1494)
—0.0009 (0.1280)
—0.0004 (0.1134)

0.0181(0.4577)

0.0071(0.2901)

0.0023 (0.2272)

0.0034 (0.1934)

0.0017 (0.1694)

0.015 (0.6077)
—0.0023 (0.3837)

0.0002 (0.3048)

0.0003 (0.2621)
—0.0002 (0.2327)

0.0203 (0.8687)

0.0082 (0.5715)

0.0055 (0.4483)

0.0047 (0.381M)

0.0035 (0.3406)
—0.1009 (1.2340)

0.0027 (0.9416)

0.0049 (0.7545)
0.0001(0.6380)
—0.0017 (0.5635)

—0.0075 (0.1877)
—0.0035 (0.1490)
—0.0027 (0.1279)
—0.0015 (0.1134)
—0.0367 (0.4470)
—0.0043 (0.2879)
—0.0024 (0.2265)
0.0008 (0.1932)
0.0000 (0.1693)
—0.0555 (0.6130)
—0.0172 (0.3817)
—0.0062 (0.3043)
—0.0032 (0.2619)
—0.0023 (0.2326)
—0.0370 (0.9505)
—0.0141(0.5692)
—0.0040 (0.4473)
—0.0005 (0.3807)
0.0002 (0.3403)
0.1104 (1.5859)
0.0150 (1.0249)
—0.0024 (0.7738)
—0.0073 (0.6416)
—0.0069 (0.5635)

estimates are smaller than those of the uncorrected estimates (see Tables 1-4). Thus, it is clear
that the bias corrected estimators (BCE and PBE) also achieve root mean-squared error reduc-
tion. Note that all the estimators show the property of consistency i.e., the RMSE decreases as
sample size increases. Thus, these simulation results show that second-order bias reduction
can be quite successful in bringing the estimates closer to their true values.

5. lllustrative example

In this section, we consider a real life data set and illustrate the methods proposed in the
previous sections. The data set is from Bjerkedal (1960), and it represents the survival times
(in days) of guinea pigs injected with different doses of tubercle bacilli. Table 5 represents
the point estimates of i and § along with standard errors of MLEs, BCEs and PBEs. It is
observed that BCE and PBE estimates provide the lowest standard errors for 8 whereas for u,
the uncorrected MLEs provides the lowest standard error. We also note that the BCE and PBE

Table 5. MLEs and bias-corrected MLEs (standard error).

Estimators n B

MLE 54.1756 (4.7504) 1.4152 (0.1300)
BCE 53.7707 (4.8070) 13880 (0.1275)
PBE 53.7306 (4.8176) 13840 (0.1272)
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estimates of u and B are smaller than the uncorrected MLEs. Thus it is clear that the MLEs
overestimates u and 8.

6. Concluding remarks

In this paper, we have adopted a “corrective” approach to derive analytical expressions for
bias-corrected maximum likelihood estimator for the parameters of the IW distribution. The
biases of the proposed estimators are of order O (n~2), whereas for the MLEs they are of order
O(n™"), indicating that the proposed estimators converge to their true value considerably
faster than those of the MLEs. Besides, we have also considered an alternative bias-correction
technique through Efron’s Bootstrap resampling. The numerical evidence shows that the pro-
posed bias corrected estimators are quite attractive because they outperform the MLEs in
terms of bias and RMSE. We also observe that Bootstrap bias correction is less effective than
the analytic correction in terms of bias reduction, and also in terms of root mean squared error
(except for some cases). The proposed bias-corrected estimators are strongly recommended
over MLE, especially when the sample size is small or moderate, which is often encountered
in the context of reliability analysis.
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