
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lssp20

Communications in Statistics - Simulation and
Computation

ISSN: 0361-0918 (Print) 1532-4141 (Online) Journal homepage: https://www.tandfonline.com/loi/lssp20

Bias-corrected maximum likelihood estimators of
the parameters of the inverse Weibull distribution

Josmar Mazucheli, André Felipe Berdusco Menezes & Sanku Dey

To cite this article: Josmar Mazucheli, André Felipe Berdusco Menezes & Sanku Dey (2019)
Bias-corrected maximum likelihood estimators of the parameters of the inverse Weibull
distribution, Communications in Statistics - Simulation and Computation, 48:7, 2046-2055, DOI:
10.1080/03610918.2018.1433838

To link to this article:  https://doi.org/10.1080/03610918.2018.1433838

Published online: 25 Feb 2018.

Submit your article to this journal 

Article views: 66

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lssp20
https://www.tandfonline.com/loi/lssp20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610918.2018.1433838
https://doi.org/10.1080/03610918.2018.1433838
https://www.tandfonline.com/action/authorSubmission?journalCode=lssp20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lssp20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2018.1433838&domain=pdf&date_stamp=2018-02-25
http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2018.1433838&domain=pdf&date_stamp=2018-02-25


https://doi.org/./..

Bias-corrected maximum likelihood estimators of the
parameters of the inverse Weibull distribution

Josmar Mazuchelia, André Felipe Berdusco Menezesa, and Sanku Deyb

aDepartment of Statistics, Universidade Estadual de Maringá Maringá, PR, Brazil; bDepartment of Statistics, St.
Anthony’s College, Shillong, Meghalaya, India

ARTICLE HISTORY
Received  May 
Accepted  January 

KEYWORDS
Bootstrap bias-correction;
Cox-Snell bias-correction;
Inverse Weibull distribution;
Maximum likelihood
estimators; Monte Carlo
simulation

MATHEMATICS SUBJECT
CLASSIFICATION
F; F; N; N

ABSTRACT
Maximum likelihood estimators usually have biases of the orderO(n−1)
for large sample size nwhich are very often ignored because of the fact
that they are small when compared to the standard errors of the param-
eter estimators that are of orderO(n−1/2). The accuracy of the estimates
maybe affectedby suchbias. To reduce suchbias of theMLEs fromorder
O(n−1) to order O(n−2), we adopt some bias-corrected techniques. In
this paper, we adopt two approaches to derive first-order bias correc-
tions for the the maximum likelihood estimators of the parameters of
the Inverse Weibull distribution. The first one is the analytical method-
ology suggested by Cox and Snell (1968) and the second is based on the
parametric Bootstrap resampling method. Monte Carlo simulations are
conducted to investigate the performance of thesemethodologies. Our
results reveal that the bias corrections improve the accuracy as well as
the consistency of the estimators. Finally, an examplewith a real data set
is presented.

1. Introduction

The Weibull distribution has been adopted as a successful model for many product failure
mechanisms because of its flexibility and wide range of applicability. Extensive work has been
done on this distribution, both from the frequentist and Bayesian points of view, see for
example the excellent review by Johnson, Kotz, and Balakrishnan (1995) and Kundu (2008),
for some references. The limitation of this model is its incapability to accommodate non-
monotone hazard rates such as bathtub shape, the unimodal (upside-down bathtub) or mod-
ified unimodal shape which are common in human mortality, machine life cycles, biological
and medical studies. Therefore, if the empirical study indicates that the hazard function of
the underlying distribution is not monotone, and it is unimodal, then inverse Weibull (IW)
distributionmay be used to analyze such data. Extensive work has been done on the IWdistri-
bution, see for example Keller and Kanath (1982), Calabria and Pulcini (1989), Erto (1989),
Calabria and Pulcini (1990), Calabria and Pulcini (1992), Jiang, Ji, and Xiao (2003), Mah-
moud, Sultan, and Amer (2003), Maswadah (2003), Kundu and Howlader (2010), Nassar and
Abo-Kasem (2017) and the references cited therein. The Inverse Weibull also known as the
Fréchet distribution is named after French mathematician Maurice René Fréchet, who devel-
oped it in the 1920s as a maximum value distribution, which is also known as the extreme
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value distribution of type II (Fréchet 1928). The IW distribution has the ability to model fail-
ure rates which are quite common in reliability and biological studies. Kotz and Nadarajah
(2000) in their book, described this distribution and discussed its wide applicability in differ-
ent spheres such as accelerated life testing, natural calamities, horse racing, rainfall, queues in
supermarkets, sea currents, wind speeds, track race records and so on. The IW distribution is
also a limiting distribution of the largest order statistics.

The random variableX has InverseWeibull distribution if its cumulative distribution func-
tion (c.d.f.) is defined as:

F(x | μ, β) = exp
[
−

(μ

x

)β
]

, x > 0 (1)

where μ > 0 and β > 0 are scale and shape parameters, respectively. The corresponding
probability density function (p.d.f.) is given by:

f (x | μ, β) = β μβ x−(β+1) exp
[
−

(μ

x

)β
]

. (2)

If β = 1, the p.d.f. of IW becomes the inverse exponential distribution, and when β = 2,
the IW p.d.f. is referred to as the inverse Rayleigh distribution.

Many authors have discussed the situations where the data shows the upside-down bathtub
shape hazard rates. For example: Efron (1988) analyzed the data set in the context of head
and neck cancer, in which the hazard rate initially increased, attained a maximum and then
decreased before it stabilized owing to a therapy. Bennett (1983) analyzed lung cancer trial
data which showed that failure rates were unimodal in nature. Langlands et al. (1979) have
studied the breast carcinoma data and found that the mortality reached a peak after some
finite period, and then declined gradually.

Choice of estimation methodology is important when estimating parameters from any
probability distribution. Among all the classical estimationmethods, themost frequently used
method is themaximum likelihood estimationmethod (Pawitan 2001). Its success stems from
itsmany desirable properties including consistency, asymptotic efficiency, invariance property
as well as its intuitive appeal. However, it is well known that in finite samples the maximum
likelihood estimator (MLE) not possess any desirable sampling properties. In particular, the
MLE is often biased for small sample sizes. The determination of such bias can be complicated,
as the likelihood equations (first-order conditions) that determine themaximum of the likeli-
hood function are often highly non-linear, and do not possess a closed-form solution. There-
fore, it is important to derive closed-form expressions for the first-order biases of estimators
in some classes of models which can be used in practical applications in order to evaluate
the accuracy of these estimators and also to define estimators with smaller biases. Several
researchers strive to develop nearly unbiased estimators for the parameters of several distri-
butions. Readers may refer to Cribari-Neto and Vasconcellos (2002), Saha and Paul (2005),
Lemonte, Cribari-Neto, and Vasconcellos (2007), Giles (2012), Schwartz, Godwin, and Giles
(2013), Giles, Feng, and Godwin (2013), Ling and Giles (2014), Schwartz and Giles (2016),
Wang and Wang (2017), Mazucheli and Dey (2018), Mazucheli, Menezes, and Dey (2017a),
Mazucheli, Menezes, and Nadarajah (2017b), Reath, Dong, and Wang (2018) and references
cited therein.

In this paper, we adopt two bias corrected techniques to reduce the bias of the MLE from
order O(n−1) to order O(n−2) for the two parameter IW distribution and illustrate their
performance. First, we discuss the analytical methodology suggested by Cox and Snell (1968),
which is called “corrective” approach and derive “bias adjusted” MLEs of second order where
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the bias-correction is done by subtracting the bias (estimated at the MLEs of the parameters)
from the true value of the MLEs. Secondly, as an alternative to the analytically bias-corrected
MLEs, we consider the bias-corrected MLEs through Efron (1982) parametric Bootstrap
resamplingmethodwhich is also second-order bias correction. In thismethod bias correction
is performed numerically without deriving analytical expression for the bias function. In
this paper, we are focusing on corrective approach for bias correction and thus we have not
attempted the preventive approach suggested by Firth (1993). The effectiveness of the sug-
gested two bias correction techniques, in terms of both bias reduction and its impact on root
mean squared error, is compared with classical MLEs. The simulation study of the proposed
bias corrected estimators reveal that these estimators are quite accurate even for small sample
sizes and are superior to classical MLEs in terms of their bias and root mean squared errors.

The remainder of this paper is organized as follows. In Sections 2 and 3, we summarize
themaximum likelihood estimators and its bias-corrected version. AMonte Carlo simulation
experiment are conducted in Section 4 to compare the performance among the Cox-Snell bias
adjusted estimators, bootstrap-based bias-adjusted estimators and the uncorrected MLEs. In
Section 5, an application to real data set is presented for illustrative purposes. Finally, Section
6 concludes the paper.

2. Maximum likelihood estimation

In this section, we discuss the maximum likelihood estimators (MLEs) of the inverse Weibull
distribution and their asymptotic properties.

Let x = (x1, . . . , xn) be a random sample from the Inverse Weibull distribution with p.d.f.
(1). Then, the log- likelihood function for � = (μ, β) can be written as:

�(� | x) = n logβ + nβ logμ − (β + 1)
n∑

i=1

log xi −
n∑

i=1

(
μ

xi

)β

. (3)

The MLE of μ and β may be found by solving the following non-linear equations:

∂

∂μ
�(� | x) = nβ

μ
− β

μ

n∑
i=1

(
μ

xi

)β

= 0, (4)

∂

∂β
�(� | x) = n

β
+ n logμ −

n∑
i=1

log xi −
n∑

i=1

(
μ

xi

)β

log
(

μ

xi

)
= 0. (5)

The expected Fisher information matrix is given by:

I(� | x) = n

⎡
⎢⎢⎣

π 2 + 6γ 2 − 12γ + 6
6β2

1 − γ

μ
1 − γ

μ

β2

μ2

⎤
⎥⎥⎦ . (6)

Then, its inverse is defined as:

I−1(� | x) = 1
n

⎡
⎢⎢⎢⎣

6β2

π 2

6μ (γ − 1)
π 2

6μ (γ − 1)
π 2

μ2(π 2 + 6γ 2 − 12γ + 6)
β2 π 2

⎤
⎥⎥⎥⎦ (7)

where π � 3.141593 and γ � 0.577216 is the Euler’s constant.
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3. Bias-correctedMLEs

In this section, we describe the two “corrective” approach to bias-correction, both of which
reduces the biases of the MLEs of inverse Weibull distribution to the second order magni-
tude. We consider the methodology introduced by Cox and Snell (1968) and the parametric
Bootstrap resampling method (Efron 1982).

3.1. Cox-snell methodology

Let �(� | x) denote the log-likelihood function of a p-dimensional parameter vector� based
on a sample of observations x. We shall assume some regularity conditions on the behavior
of the log-likelihood function (see Cox and Hinkley, 1974).

The joint cumulants of the derivatives of � are given by:

Ii j = E

[
∂2 �

∂ �i ∂ � j

]
, Ii jl = E

[
∂3 �

∂ �i ∂ � j ∂ �l

]
and Ii j,l = E

[(
∂2 �

∂ �i ∂ � j

) (
∂ �

∂ �l

)]
.

for i, j, l = 1, . . . , p. All expression above are assumed to be to the orderO(n).
Cox and Snell (1968) showed that when the sample data are independent, but not necessar-

ily identically distributed, the bias of the r–th element of the MLE of �, �̂, can be expressed
as:

B(�̂r) =
p∑

i=1

p∑
j=1

p∑
l=1

Isi I jl [0.5Ii jl + Ii j,l] + O(n−2), (8)

where r = 1, . . . , p and Ii j denotes the the (i, j)–th element of the inverse of the expected
Fisher information matrix.

After extensive algebraic manipulation, we are able to obtain the following expressions for
the Inverse Weibull distribution:

I111 = n
2β3

[
4 ξ (3) + (γ − 1) (π 2 + 2 γ 2 − 4 γ − 4)

]
,

I112 = I121 = I211 = − n
6μ β

[π 2 + 6 γ 2 − 24 γ + 12],

I122 = I122 = I221 = n
μ2 [β (γ − 3) − γ + 1] ,

I222 = −nβ2 (β − 3)
μ3 .

We also have:

I11,1 = − n
2β3

[
π 2 γ + 2 γ 3 − 5

3
π 2 − 10 γ 2 + 8 γ + 4 ξ (3)

]
,

I11,2 = I12,1 = I21,1 = n
6μ β

[
π 2 + 6 γ 2 − 24 γ + 12

]
,

I12,2 = I21,2 = nβ (3 − γ )

μ2 ,

I22,1 = −n (β − 1) (γ − 1)
μ2 ,

I22,2 = n (β − 1) β2

μ3 ,

where ζ (s) = ∑∞
n=1

1
ns is the Riemann’s Zeta function.
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Thus, the second-order bias of the maximum likelihood estimator of μ and β are defined,
respectively, as:

B(μ̂) = 1.379530691β

n
(9)

and:

B(β̂ ) = μ (0.3698145391β + 0.5543324494)
nβ2 . (10)

Using (9) and (10) we define the bias-corrected estimators (BCE) of μ̂ and β̂ to be, respec-
tively μ̂BCE = μ̂ − B̂(μ̂) and β̂BCE = β̂ − B̂(β̂ ). It is to be noted that μ̂BCE and β̂BCE have bias
of order O(n−2) and is expected that they have superior sampling properties relative to μ̂

and β̂ .

3.2. Parametric bootstrap

An alternative approach to obtain bias-corrected estimators is the parametric Bootstrap
resampling method (PBE), pioneered by Efron (1982). In particular, this method uses the
MLEs of the data to generate pseudo-random samples from the distribution to estimate the
bias and then subtract the bias from the MLE.

Table . Estimated bias (root mean-squared error) forμ and β , (μ = 0.5).

Estimator ofμ Estimator of β

β n MLE BCE PBE MLE BCE PBE

.  . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)

.  . (.) . (.) −. (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)

.  . (.) . (.) −. (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) . (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)

.  . (.) . (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)

.  . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) . (.)

.  . (.) . (.) −. (.) . (.) −. (.) . (.)
 . (.) . (.) . (.) . (.) −. (.) . (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
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For a parameter vector � the estimated bias of �̂ is defined as:

B̂(�̂) = 1
B

B∑
j=1

�( j) − �̂, (11)

where �̂( j) is the MLE of � obtained from the j-th Bootstrap sample, generated from (2)
and using the maximum likelihood estimate �̂ as the true value. Thus, the Bootstrap bias-
corrected estimator is:

�̂PBE = 2 �̂ − 1
B

B∑
j=1

�̂( j). (12)

It is noteworthy that the PBE does not involve analytical derivatives. Also, this approach
provides an unbiased estimator to second order.

4. Simulation study

In this section, we carry out Monte Carlo simulations in order to compare the finite-sample
behavior of the MLEs of μ and β and their bias corrections proposed in Section 3. The com-
parison is based on the empirical biases and root mean squared error criteria.

We have taken sample sizes n = {10, 20, 30, 40, 50} and the parameters are fixed at μ =
{0.5, 1.0, 1.5, 2.0} and β = {0.5, 1.0, 1.5, 2.0, 3.0, 5.0}. For each combination of n, μ and

Table . Estimated bias (root mean-squared error) forμ and β , (μ = 1.0).

Estimator ofμ Estimator of β

β n MLE BCE PBE MLE BCE PBE

.  . (.) −. (.) . (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)

.  . (.) . (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)

.  . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)

.  . (.) . (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) . (.)

.  . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)

.  . (.) . (.) −. (.) . (.) −. (.) . (.)
 . (.) . (.) . (.) . (.) −. (.) . (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
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β , we simulate pseudo-random samples from inverse Weibull distribution using the inverse
transform method, that is x = (x1, . . . , xn) is generated from:

xi = exp
[
β logμ − log(− log ui)

β

]
, i = 1, . . . , n

where ui are random numbers from a standard uniform distribution.
The number of Monte Carlo replications are fixed at M = 10, 000 and B = 1000 Boot-

strap replicates. All simulation studies are carried out in Ox Console (Doornik, 2007) and
the MaxBFGS function is used to obtain the maximum likelihood estimates. The results are
reported in Tables 1–4.

From Table 1, we observe that the biases of μBCE , μPBE and βBCE , βPBE are consistently
smaller than the biases of μMLE and βMLE ; the biases of MLEs appear positive for both the
parameters; the magnitude of the biases of μ and β appears largest for the unadjusted ML
estimates for every n; in most of the cases, the biases of all the estimators ofμ and β generally
approach to zero as n increases; Similar results are observed in Tables 2–4. The estimators
μBCE , βBCE and μPBE , βPBE clearly outperform the estimators μMLE and βMLE as far as bias
goes. Thus the estimators based on analytical and parametric Bootstrap resampling methods
achieve substantial bias reduction, especially for the small and moderate sample sizes and
therefore we consider them as better alternatives of the MLEs for μ and β . We also observe
that the bias-corrected estimates are closer to the true parameter values than the unadjusted
estimates as sample size increases. Additionally, the root mean squared errors of the corrected

Table . Estimated bias (root mean-squared error) forμ and β , (μ = 1.5).

Estimator ofμ Estimator of β

β n MLE BCE PBE MLE BCE PBE

.  . (.) −. (.) . (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)

.  . (.) . (.) −. (.) . (.) . (.) −. (.)
 . (.) . (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)

.  . (.) . (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)

.  . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)

.  . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)

.  . (.) . (.) . (.) . (.) −. (.) . (.)
 . (.) . (.) . (.) . (.) −. (.) . (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
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Table . Estimated bias (root mean-squared error) forμ and β , (μ = 2.0).

Estimator ofμ Estimator of β

β n MLE BCE PBE MLE BCE PBE

.  . (.) −. (.) . (.) . (.) . (.) −. (.)
 . (.) −. (.) . (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)

.  . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)
 . (.) −. (.) −. (.) . (.) −. (.) −. (.)

.  . (.) . (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) . (.)
 . (.) −. (.) −. (.) . (.) . (.) . (.)

.  . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)

.  . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) . (.)

.  . (.) . (.) −. (.) . (.) −. (.) . (.)
 . (.) . (.) −. (.) . (.) . (.) . (.)
 . (.) −. (.) −. (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) . (.) −. (.)
 . (.) . (.) . (.) . (.) −. (.) −. (.)

estimates are smaller than those of the uncorrected estimates (see Tables 1–4). Thus, it is clear
that the bias corrected estimators (BCE andPBE) also achieve rootmean-squared error reduc-
tion. Note that all the estimators show the property of consistency i.e., the RMSE decreases as
sample size increases. Thus, these simulation results show that second-order bias reduction
can be quite successful in bringing the estimates closer to their true values.

5. Illustrative example

In this section, we consider a real life data set and illustrate the methods proposed in the
previous sections. The data set is from Bjerkedal (1960), and it represents the survival times
(in days) of guinea pigs injected with different doses of tubercle bacilli. Table 5 represents
the point estimates of μ and β along with standard errors of MLEs, BCEs and PBEs. It is
observed that BCE and PBE estimates provide the lowest standard errors for β whereas forμ,
the uncorrectedMLEs provides the lowest standard error.We also note that the BCE and PBE

Table . MLEs and bias-corrected MLEs (standard error).

Estimators μ β

MLE . (.) . (.)
BCE . (.) . (.)
PBE . (.) . (.)
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estimates of μ and β are smaller than the uncorrected MLEs. Thus it is clear that the MLEs
overestimates μ and β .

6. Concluding remarks

In this paper, we have adopted a “corrective” approach to derive analytical expressions for
bias-corrected maximum likelihood estimator for the parameters of the IW distribution. The
biases of the proposed estimators are of orderO(n−2), whereas for theMLEs they are of order
O(n−1), indicating that the proposed estimators converge to their true value considerably
faster than those of the MLEs. Besides, we have also considered an alternative bias-correction
technique through Efron’s Bootstrap resampling. The numerical evidence shows that the pro-
posed bias corrected estimators are quite attractive because they outperform the MLEs in
terms of bias and RMSE. We also observe that Bootstrap bias correction is less effective than
the analytic correction in terms of bias reduction, and also in terms of rootmean squared error
(except for some cases). The proposed bias-corrected estimators are strongly recommended
over MLE, especially when the sample size is small or moderate, which is often encountered
in the context of reliability analysis.
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