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Abstract
Methods to obtain discrete analogs of continuous distributions have been widely applied in
recent years. In general, the discretization process provides probability mass functions that
can be competitive with traditional models used in the analysis of count data. The discretiza-
tion procedure also avoids the use of continuous distribution to model strictly discrete data.
In this paper, we propose two discrete analogs for the quasi xgamma distribution as alterna-
tives to model under- and overdispersed datasets. The methods of infinite series and survival
function have been considered to derive the models and, despite the difference between the
methods, the resulting distributions are interchangeable. Several statistical properties of the
proposed models have been derived. The maximum likelihood theory has been considered
for estimation and asymptotic inference concerns. An intensive simulation study has been
carried out in order to evaluate the main properties of the maximum likelihood estimators.
The usefulness of the proposed models has been assessed by using two real datasets pro-
vided by literature. A general comparison of the proposed models with some well-known
discrete distributions has been provided.

Keywords Count data · Discretization methods · Quasi xgamma distribution ·
Data dispersion · Maximum likelihood estimation · Simulation study
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1 Introduction

In recent decades, the proposition of probabilistic models by discretization of a continu-
ous random variable has been widely addressed in the literature. The main purpose of the
discretization is to generate distributions that can be used in the analysis of strictly dis-
crete data. For example, in survival analysis is common to use continuous distributions to
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model discrete data, so the discretization acts as a subterfuge to avoid this process. Several
applications where continuous distributions were used to model discrete data can be found
in Klein and Moeschberger (1997), Meeker and Escobar (1998), Kalbfleisch and Prentice
(2002), Lee and Wang (2003), Lawless (2003), Collett (2003), Hamada et al. (2008), among
many others. A complete survey regarding all discretization methods and some discretized
distributions can be found in Chakraborty (2015b).

One of the first proposed discretization methods is based on the definition of a proba-
bility mass function (pmf) that depends on an infinite series. The first traces of this method
were presented by Good (1953), which has proposed the discrete Good distribution to
model population frequencies of species. Such an approach was considered by other authors
to define discrete analogs, and here we will point out a few. Haight (1957) proposed the
discrete Pearson III distribution to model queues with baking and Siromoney (1964) intro-
duced the Dirichlet’s Series distribution as an alternative to model the frequency of wet days
(rain-spells). After a long break, this method was revived by Kemp (1997) that formally
introduced the discrete Normal distribution and derived its main statistical properties. The
discrete Exponential distribution was proposed by Sato et al. (1999) to describe the defect
count frequencies on wafers or chips. Bi et al. (2001) introduced the discrete Log-normal
distribution and showed that this model fits well to Internet click-stream data, among others.
Inusah and Kozubowski (2006) presented the discrete Laplace distribution discussing that,
relatively to the discrete Normal, the proposed model has closed-forms for the pmf, for the
generating functions and the central moments. The skewed version of the discrete Laplace
distribution was proposed by Kozubowski and Inusah (2006). Besides, Kemp (2008) intro-
duced the discrete Half-Normal distribution studying its relation with other distributions
and Nekoukhou et al. (2012) proposed the discrete Generalized Exponential distribution as
an attempt to model rank frequencies of graphemes in the Slovene language. Lisman and
Van Zuylen (1972)

Another widespread method to obtain discrete analogs of continuous random vari-
ables is that one based on the survival function of the original distribution. This method
was proposed by Nakagawa and Osaki (1975) and has the interesting feature of preserv-
ing the original survival function on its integer part for the generated pmf (Kemp 2004;
Chakraborty 2015b). Several authors have considered the discretization method by survival
function, and here we will also point out a few. Nakagawa and Osaki (1975) proposed
the discrete Weibull distribution and discussed its main properties. The Geometric-Weibull
distribution considering a discrete analog for the Weibull component was introduced by
Bracquemond and Gaudoin (2003). Roy (2004) proposed the discrete Rayleigh distribution
and presented its usefulness in the stress-strength analysis. The discrete Burr and Pareto
distributions were introduced by Krishna and Pundir (2009) for application in reliabil-
ity estimation in series systems. Jazi et al. (2010) proposed the discrete Inverse Weibull
distribution and discussed different estimation methods for the model parameters. Gómez-
Déniz and Calderı́n-ojeda (2011) introduced the discrete Lindley distribution and illustrated
its application using automobile claim frequency data. The discrete Gamma distribution
was proposed by Chakraborty and Chakravarty (2012), which derived several statistical
properties of such a model. Also, Nekoukhou et al. (2013) presented the discrete Type
II Generalized Exponential distribution, and Hussain and Ahmad (2014) introduced the
discrete Inverse Rayleigh distribution as alternatives to model overdispersed count data.

The primary goal of this paper is to apply the methods of infinite series and sur-
vival function to derive discrete analogs for the quasi xgamma distribution, which is a
2-parameter lifetime model introduced and widely studied by Sen and Chandra (2017). We
expect the proposed models to be suitable alternatives to model under- and overdispersed
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count datasets. A continuous random variable X is said to have xgamma distribution if its
probability density function (pdf) can be written as

f
X (x; α, θ) = θ

α + 1

[
α + θ2

2
x2
]

e−θx, x ∈ R+, (1)

where (α, θ) ∈ R
2+ are the shape parameters. The authors has shown that this model can

be derived as a 2-component mixture of an Exponential distribution with mean θ−1 and a
Gamma distribution with shape parameter 3 and scale parameter θ , with mixing proportions
given by α (1 + α)−1 and (1 + α)−1, respectively.

A comprehensive discussion about the statistical properties of the quasi xgamma dis-
tribution such as moments, hazard function, entropies, stochastic orderings, parameter
estimation, among others is also presented on the mentioned paper. The corresponding
survival function of X is given by

S
X (x; α, θ) = 1

α + 1

[
1 + α + θx + θ2x2

2

]
e−θx, x ∈ R+, (2)

for (α, θ) ∈ R
2+.

Remark 1 For specific values of parameter α, the quasi xgamma distribution has some
particular cases.

i) If α = 0, then X has a gamma distribution with shape parameter 3 and scale parameter
θ , that is, X ∼ Gamma (3, θ).

ii) If α = 1, then Eq. 1 gives rise to a new class of distribution, with general pdf given by

f
X (x; θ) = θ

2

[
1 + θ2

2
x2
]

e−θx, x ∈ R+,

for θ ∈ R+.
iii) When α = θ , then Eq. 1 corresponds to the xgamma distribution, with pdf given by

f
X (x; θ) = θ

θ + 1

[
1 + θ2

2
x2
]

e−θx, x ∈ R+,

for θ ∈ R+.

This paper is organized as follow. In Section 2 we briefly present the methods of infi-
nite series and survival function to derive discrete analogs of continuous distributions. In
Section 3, we introduce two versions for the discrete quasi xgamma distribution, and we
derive the main statistical properties of each model. In Section 4, the problem of estimat-
ing the model parameters is addressed, and classical inference procedures are discussed. In
Section 5, the results of an intensive simulation study are presented in order to assess the
main properties of the maximum likelihood estimators (MLEs). In Section 6, two real appli-
cations of the proposed models are exhibited as a way to illustrate its usefulness. Concluding
remarks are addressed in Section 7.

2 DiscretizationMethods

In this section, we present two discretization methods that will be considered to obtain
discrete analogs for the quasi xgamma distribution. It is important to point out that the paper
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of Chakraborty (2015b) is possibly the only paper with an exhaustive discussion on various
methods of discretization.

2.1 Discretization by Infinite Series

The method of discretization by infinite series was firstly considered by Good (1953), which
has proposed the discrete Good distribution to model population frequencies of species. A
random variable Y is said to have a discrete Good distribution if its pmf can be written as

P (Y = y; α, δ) = δyyα∑∞
j=1 δj jα

, y ∈ Z+,

for α ∈ R and δ ∈ (0, 1). The method of infinite series is characterized by the following
definition.

Definition 1 Let X be a continuous random variable. If X has pdf f
X (x; θ) with support

on R, then the corresponding discrete random variable Y has pmf given by

P (Y = y; θ) = f
X (y; θ)∑∞

j=−∞f
X (j ; θ)

, y ∈ Z,

where θ is the vector of parameters indexing the distribution of X.

This method was exploited by several authors including Kulasekera and Tonkyn (1992),
Doray and Luong (1997), Kemp (1997), and Sato et al. (1999), which proposed a version of
the method when the continuous random variable of interest is defined on R+. Thus, if the
random variable X is defined on R+, the pmf of Y becomes

P (Y = y; θ) = f
X (y; θ)∑∞

j=0 f
X (j ; θ)

, y ∈ Z+. (3)

One of the most recent examples of the use of this method is the discrete analog of the
generalized Exponential distribution (Nekoukhou et al. 2012), whose pmf is given by

P (Y = y;α, λ) = λx−1 (1 − λx
)α−1

[ ∞∑
i=1

(
α − 1

j

)
(−1)j λj

1 − λ1+j

]−1

, y ∈ Z+,

for α ∈ R+ and λ ∈ (0, 1).
A possible drawback of such method is the fact that, in some instances, the generated

pmf may have no closed-form, which is the case of the generalized Exponential model.
However, it will be shown that this is not the case when obtaining the discrete analog for
the quasi xgamma distribution by this method.

2.2 Discretization by Survival Function

The method of discretization by survival function was proposed by Nakagawa and Osaki
(1975). This method allows us to discretize a continuous random variable from its survival
function. Several properties of the survival and of the risk functions were studied by Brac-
quemond and Gaudoin (2003), Roy (2003), Kemp (2004), Chakraborty (2015b), among
others. The most important feature of this method is that it preserves the original survival
function on its integer part for the generated pmf (Chakraborty 2015b). Some other contri-
butions in this area are given by Chakraborty and Chakravarty (2012, 2016), Chakraborty



Methodology and Computing in Applied Probability

and Gupta (2015) and Chakraborty (2015a). According to Roy (2003), we can define a
discrete random variable from a continuous one as follow.

Definition 2 Let X be a continuous random variable. If X has survival function S
X (x; θ),

then the discrete random variable Y = �X� has pmf as follow

P (Y = y; θ) = S
X (y; θ) − S

X (y + 1; θ) , y ∈ Z+, (4)

where �·� denotes the floor function, which returns the highest integer value smaller or equal
then its argument.

It is noteworthy to mention that if the original survival function has closed-form, then
the generated pmf will also have. For example, the Weibull distribution with pdf

f
X (x; μ, θ) = θ

μθ
xθ−1e

−
(

x

μ

)θ

, x ∈ R+,

and survival function

S
X (x; μ, θ) = e

−( x
μ

)θ
, x ∈ R+,

where (θ, μ) ∈ R
2+ are, respectively, the shape and the scale parameters, was one of the first

discretized distributions by this method. Nakagawa and Osaki (1975) proposed the discrete
Weibull distribution where the pmf for the random variable Y = �X� is given by

P (Y = y; μ, θ) = e
−(

y
μ

)θ − e
−(

y+1
μ

)θ
, y ∈ Z+,

for (θ, μ) ∈ R
2+. It is straightforward to prove that the above equation corresponds to a

properly pmf since it involves simple exponential terms.

3 The Discrete Quasi Xgamma Distribution

In this section, we will consider both methods previously presented to derive discrete
analogs for the quasi xgamma distribution. For ease of notation, each probabilistic model
provided by these methods will be denoted by DQX1 (type I discrete quasi xgamma) and
DQX2 (type II discrete quasi xgamma) distributions, respectively. For each version of this
model, the main statistical properties as the shape, the moments and the generating functions
will be discussed.

3.1 Type I Discrete Quasi Xgamma Distribution

By considering Eq. 3, one can define the 2-parameter DQX1 distribution. We have the
following definition.

Definition 3 Let X be a continuous random variable distributed accordingly to a xgamma
distribution (1) with parameters (α, θ) ∈ R

2+. Let h (z1, z2) = ez1 − z2, z1 ∈ R and z2 ∈ R.
The pmf of Y having DQX1 distribution is given by

P (Y = y; α, θ) = h (−θy, 0)

q (α, θ)

[
α + θ2

2
y2
]

, y ∈ Z+, (5)
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for (α, θ) ∈ R
2+ and where

q (α, θ) = 1

2

{
h (θ, 0)

[
2α h2 (θ, 1) + θ2h (θ, −1)

]
h3 (θ, 1)

}

is the inverse of the normalizing constant.

Proposition 1 The Eq. 5 is a proper pmf.

Proof Here we have to prove that
∑∞

y=0 P (Y = y; α, θ) = 1 for (α, θ) ∈ R
2+. Then

∞∑
y=0

P (Y = y; θ) =
∞∑

y=0

h (−θy, 0)

q (α, θ)

[
α + θ2

2
y2
]

= 1

q (α, θ)

⎧⎨
⎩α

∞∑
y=0

h (−θy, 0) + θ2

2

∞∑
y=0

y2h (−θy, 0)

⎫⎬
⎭

= 1

q (α, θ)

{
α h (θ, 0)

h (θ, 1)
+ θ2h (θ, 0) h (θ, −1)

2h3 (θ, 1)

}

= 1,

which concludes the proof.

For a discrete random variable Y having DQX1 distribution, we will adopt the notation
Y ∼ DQX1 (α, θ). The pmf (5) does not involve complicated expressions, and therefore,
the probabilities can be straightforwardly computed, as for example,

P (Y = 0;α, θ) = α

q (α, θ)
,

for (α, θ) ∈ R
2+. Figure 1 depicts the behavior of the pmf (5) for selected values of α and θ .

We have derived some theoretical properties of the DQX1 distribution. These properties
are stated in the following propositions.

Proposition 2 Let Y ∼ DQX1 (α, θ). The survival function of Y is given by

S (y; α, θ) = 1 − 2α [h (θ, 0) − h (−θy, 0)] − θ2t (y, θ)

2 q (α, θ) h (θ, 1)
, y ∈ Z+,

for (α, θ) ∈ R
2+ and where

t (y, θ)

= y2h(−θy, 0) [h (θ, 0) h (θ, 2)+1] + 2yh (−θy, 0) h (θ, 0) h (θ,1)+h (θ, 0) h (θ,−1) [h (−θy, 0)−1]

h2 (θ, 1)
.
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Fig. 1 Behavior of the DQX1 distribution for different values of α and θ

Proof By definition, S (k; α, θ) = P (Y > k; α, θ) = 1 − P (Y � k;α, θ). Then

S (k;α, θ) = 1 −
k∑

y=0

h (−θy, 0)

q (α, θ)

[
α + θ2

2
y2
]

= 1 − 1

q (α, θ)

⎧⎨
⎩α

k∑
y=0

h (−θy, 0) + θ2

2

k∑
y=0

y2h (−θy, 0)

⎫⎬
⎭

= 1 − 1

q (α, θ)

{
α

[
h (θ, 0) − h (−θy, 0)

h (θ, 1)

]
− θ2

2
t (α, θ)

}

= 1 − 2α [h (θ, 0) − h (−θy, 0)] − θ2t (y, θ)

2 q (α, θ) h (θ, 1)
,

which concludes the proof.
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Proposition 3 Let Y ∼ DQX1 (α, θ). The probability generating function (pgf) of Y is
given by

G (s) = h (θ, 0)

2q (α, θ)

{
2α
[
h (θ, 0) h (θ, 2s) + s2

]+ θ2sh (θ,−s)

h3 (θ, s)

}
,

for (α, θ) ∈ R
2+ and s �= eθ .

Proof By definition, G (s) = E
(
sY
)
. For s �= eθ , we have that

G(s) =
∞∑

y=0

sy h (−θy, 0)

q (α, θ)

[
α + θ2

2
y2
]

= 1

q (α, θ)

⎧⎨
⎩α

∞∑
y=0

syh (−θy, 0) + θ2

2

∞∑
y=0

y2syh (−θy, 0)

⎫⎬
⎭

= 1

q (α, θ)

{
αh (θ, 0)

h (θ, s)
+ sh (θ, 0) h (θ, −s)

h3 (θ, s)

}

= h (θ, 0)

2q (α, θ)

{
2α
[
h (θ, 0) h (θ, 2s) + s2

]+ θ2sh (θ, −s)

h3 (θ, s)

}
,

which concludes the proof.

Proposition 4 Let Y ∼ DQX1 (α, θ). The moment generating function (mgf) of Y is given
by

M (t) = h (θ, 0)

2q (α, θ)

{
2α
[
h (θ, 0) h

(
θ, 2et

)+ h (2t, 0)
]+ θ2h (t, 0) h

(
θ, −et

)
h3 (θ, et )

}
,

for (α, θ) ∈ R
2+ and t �= θ .

Proof By definition, M (t) = E
(
etY
)
. For t �= θ , we have that

M (t) =
∞∑

y=0

ety h (−θy, 0)

q (α, θ)

[
α + θ2

2
y2
]

= 1

q (α, θ)

⎧⎨
⎩α

∞∑
y=0

h [−y (θ − t) , 0] + θ2

2

∞∑
y=0

y2h [−y (θ − t) , 0]

⎫⎬
⎭

= 1

q (α, θ)

{
αh (θ, 0)

h (θ, et )
+ h (t, 0) h (θ, 0) h

(
θ, −et

)
h3 (θ, et )

}

= h (θ, 0)

2q (α, θ)

{
2α
[
h (θ, 0) h

(
θ, 2et

)+ h (2t, 0)
]+ θ2h (t, 0) h

(
θ,−et

)
h3 (θ, et )

}
,

which concludes the proof.



Methodology and Computing in Applied Probability

Proposition 5 Let Y ∼ DQX1 (α, θ). The cumulant generating function (cgf) of Y is given
by

C (t) = log [h (θ, 0)] + log
{

2α
[
h (θ, 0) h

(
θ, 2et

)+ h (2t, 0)
]+ θ2h (t, 0) h

(
θ, −et

)}

− log [2q (α, θ)] − 3 log
[
h
(
θ, et

)]
,

for (α, θ) ∈ R
2+ and t �= θ .

Proof Straightforward. The result is obtained by noticing that C (t) = log [M (t)].

Proposition 6 Let Y ∼ DQX1 (α, θ). The characteristic function (cf) of Y is given by

φ (t) = h (θ, 0)

2q (α, θ)

{
2α
[
h (θ, 0) h

(
θ, 2eit

)+ e2it
]+ θ2eith

(
θ, −eit

)
h3
(
θ, eit

)
}

,

for (α, θ) ∈ R
2+, t ∈ R and i = √−1 is the imaginary number.

Proof Straightforward. The result is obtained by noticing that φ (t) = M (it).

Proposition 7 Let Y ∼ DQX1 (α, θ). The kth moment of Y about the origin is given by

μ′
k =

[
3h (θ, 1) + h (−θ, 0) − h2 (θ, 0)

] {
2αP−k [h (−θ, 0)] + θ2P−(k+2) [h (−θ, 0)]

}
2α [1 − h (θ, 0) h (θ, 2)] − θ2h (θ, −1)

, k � 1,

(6)

for (α, θ) ∈ R
2+ and where P is the general polylogarithm function defined as Pa (z) =∑∞

k=1 znn−a for |z| < 1 and by an analytic continuation otherwise.

Proof By definition, μ′
k = E

(
Y k
)
. Then

μ′
k =

∞∑
y=0

yk h (−θy, 0)

q (α, θ)

[
α + θ2

2
y2
]

= 1

q (α, θ)

⎧⎨
⎩α

∞∑
y=0

ykh (−θy, 0) + θ2

2

∞∑
y=0

yk+2h (−θy, 0)

⎫⎬
⎭

= 1

q (α, θ)

{
αP−k [h (−θ, 0)] + θ2

2
P−(k+2) [h (−θ, 0)]

}

=
[
3h (θ, 1) + h (−θ, 0) − h2 (θ, 0)

] {
2αP−k [h (−θ, 0)] + θ2P−(k+2) [h (−θ, 0)]

}
2α [1 − h (θ, 0) h (θ, 2)] − θ2h (θ, −1)

.

Now, from Eq. 6, the mean (μ) and the variance (σ 2) of Y are given, respectively, by

μ = μ′
1 = 2α [h (θ, 0) h (θ, 2) + 1] + θ2 [h (θ, 0) h (θ, −4) + 1]

h (θ, 1)
[
2α [h (θ, 0) h (θ, 2) + 1] + θ2h (θ, −1)

] ,
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and

σ 2 = μ′
2 − (μ′

1

)2 = b (α, θ)

h2 (θ, 1)
[
2α [h (θ, 0) h (θ, 2) + 1] + θ2h (θ, −1)

]2 ,

where

b (α, θ) = 2h (θ, 0)
{

2θ4 [h (θ, 0) h (θ, −1) + 1] + αθ2
[
h2 (θ, 0) [h (θ, 0) h (θ, −8) − 14] + 5

]}

+ 4α2h (θ, 0) [h (θ, 0) [h (θ, 0) [h (θ, 0) h (θ, 4) + 6] − 4] + 1] .

A normalized measure of dispersion can be obtained by using the variance-to-mean rela-
tionship. This measure is the well-known index of dispersion (ID) which, in this case, is
given by

ID = σ 2

μ
= b (α, θ)

{
h (θ, 1)

[
2α [h (θ, 0) h (θ, 2) + 1] + θ2h (θ, −1)

]}−1

2α [h (θ, 0) h (θ, 2) + 1] + θ2 [h (θ, 0) h (θ,−4) + 1]
. (7)

Analogously, the coefficient of variation (CV) of Y has the form

CV = σ

μ
=

√
b (α, θ)

2α [h (θ, 0) h (θ, 2) + 1] + θ2 [h (θ, 0) h (θ,−4) + 1]
.

Another useful measure is the zero-modification (ZM) index

ZM = 1 + log [P (Y = 0)]

μ
,

which is defined based on the Poisson distribution. This index can be easily interpreted since
ZM > 0 indicates zero-inflation, ZM < 0 indicates zero-deflation and ZM = 0 indicates
no zero-modification. For the DQX1 distribution, we have that the ZM index is given by

ZM = 1 + h (θ, 1)
[
2α [h (θ, 0) h (θ, 2) + 1] + θ2h (θ,−1)

] {log (α) − log [q (α, θ)]}
2α [h (θ, 0) h (θ, 2) + 1] + θ2 [h (θ, 0) h (θ, −4) + 1]

.

(8)
The asymmetry degree and the flatness of a distribution can be measured by its coeffi-

cients of skewness and kurtosis, respectively. The first one can be computed by the third
central moment normalized by the variance raised to the power 3/2 and the latter is given
by the fourth central moment divided by the square of the variance. These coefficients are
essential to characterize the shape of any distribution but, for the DQX1 model, exten-
sive and very complicated expressions were obtained for such measures. For this reason,
the expressions of these coefficients are omitted here. However, Table 1 summarizes, for
selected values of α and θ , the nature and the behavior of these coefficients along with the
measures previously presented.

When assessing Eq. 8 more deeply, we have obtained that ZM → 0 as θ → ∞ and
ZM → 1 as θ → 0. This implies that, besides the usual case (ZM = 0), the DQX1
distribution is suitable to deal with zero-inflation but is not indicated to model zero-deflated
datasets. Further, it is clear that the coefficient of skewness and the coefficient of kurtosis
are increasing as α and θ increases. On the other hand, the higher values of the mean, of the
variance and the index of dispersion are obtained when α and θ are simultaneously small.

Figure 2 depicts the behavior of Eq. 7. The feature that deserves to be highlighted is that
the DQX1 distribution is suitable to deal with overdispersion and underdispersion as the
index of dispersion can be either higher or smaller than 1 for certain values of parameters α

and θ .
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Table 1 Theoretical descriptive statistics under DQX1 distribution

α θ Measures

Mean Variance ID CV ZM Skewness Kurtosis

0.50 0.25 8.9386 53.0013 5.9295 0.8145 0.7173 1.1423 4.7333

1.00 0.50 3.5056 12.3745 3.5300 1.0035 0.5684 1.3630 5.2937

1.50 0.75 1.8878 4.9517 2.6231 1.1788 0.4578 1.5857 6.0867

2.00 1.00 1.1645 2.4866 2.1353 1.3541 0.3711 1.7963 6.9856

2.50 1.50 0.5843 0.9536 1.6321 1.6713 0.2508 2.1017 8.4004

1.00 3.00 0.2905 0.3049 1.0496 1.9008 0.0273 1.9586 6.9706

1.50 2.00 0.4646 0.6278 1.3513 1.7055 0.1657 1.9673 7.4146

2.00 1.50 0.6435 1.0489 1.6300 1.5916 0.2554 1.9694 7.6505

2.50 1.00 1.0715 2.2820 2.1298 1.4099 0.3623 1.9105 7.5983

3.00 0.75 1.4857 3.8704 2.6052 1.3242 0.4280 1.9178 7.7776

Proposition 8 The DQX1 distribution has an increasing hazard rate.

Proof The ratio of consecutive probabilities is given by

P (Y = y + 1; α, θ)

P (Y = y; α, θ)
=
[

1 + θ2 (2y + 1)

2α + θ2y2

]
h (−θ, 0) .

One can notice that the previous equation is a decreasing function on y. In this case,
it follows that P (Y = y; α, θ) is log-concave and therefore, the DQX1 distribution has an
increasing hazard rate. Hence the proof.
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Fig. 2 Behavior of the index of dispersion of DQX1 distribution
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In such context, it can also be proved that Eq. 5 satisfies P2 (Y = y; α, θ) �
P (Y = y − 1;α, θ) × P (Y = y + 1; α, θ), which implies unimodality (see Theorem 3
by Keilson and Gerber 1971). The relationship between log-concavity, unimodality and
increasing hazard rate of discrete distributions has been discussed by Grandell (1997).

Proposition 9 The DQX1 distribution has heavy tails as θ approaches zero.

Proof The heavy-tail (HT) index is defined by

HT = lim
y→∞

P (Y = y + 1; α, θ)

P (Y = y; α, θ)
,

for (α, θ) ∈ R
2+. For the DQX1 distribution, one can easily obtain HT = h (−θ, 0). A

discrete distribution is said to have heavy tails if HT → 1 when y → ∞. Hence,

lim
θ→0

HT = lim
θ→0

h (−θ, 0) = 1,

which concludes the proof.

3.2 Type II Discrete Quasi Xgamma Distribution

By considering Eqs. 2 and 4, one can define the 2-parameter DQX2 distribution. We have
the following definition.

Definition 4 Let X be a continuous random variable distributed accordingly to a xgamma
distribution (1) with parameters α �= −1 ∈ R, θ ∈ R+. Let h (z1, z2, z3) =
z2

2/2 (z1 + 1/z2)
2+z3+1/2; z1, z2, z3 ∈ R. The pmf of Y = �X� having DQX2 distribution

is give by

P (Y = y; α, θ) = e−θy

α + 1

[
h(y, θ, α) − h(y + 1, θ, α)e−θ

]
, y ∈ Z+, (9)

for α �= −1 ∈ R and θ ∈ R+.

Proposition 10 The Eq. 9 is a proper pmf.

Proof The result comes analogously to the proof of Proposition 1.

For a random variable Y distributed accordingly to a DQX2 distribution, we will adopt
the notation X ∼ DQX2 (α, θ). For this version, the probabilities can be easily computed
as noticed for the DQX1 distribution. Then

P (Y = 0;α, θ) = 1

α + 1

[
h(0, θ, α) − h(1, θ, α)e−θ

]
,

for α �= −1 ∈ R and θ ∈ R+. Figure 3 shows the behavior of the pmf (9) of Y , using
selected values for α and θ .

We have also derived some theoretical properties of the DQX2 distribution. These
properties are stated in the following propositions.
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Fig. 3 Behavior of the DQX2 distribution for different values of α and θ

Proposition 11 Let Y ∼ DQX2 (α, θ). The survival function of Y is given by

S (y; α, θ) = e−θy

α + 1
h(y, θ, α), y ∈ Z+,

for α �= −1 ∈ R and θ ∈ R+.

Proof The result comes analogously to the proof of Proposition 2.

Proposition 12 Let Y ∼ DQX2 (α, θ). The pgf of Y is given by

G(s) = 2[h(θ, 1, α) − (α + 1)eθ ]q(s, α, θ)

(α + 1)(s − eθ )3r(α, θ)
,
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where

q(s, α, θ)

=
[
(α + 1)(e3θ − s2) + (h(θ, 1,−2α) − 3)(eθ −1)seθ + h(θ, 1, α)(s2−eθ )eθ

]
(eθ −1),

and
r(α, θ) = (eθ − θ − 1)2 − [eθ θ2 − (eθ − 1)2(1 + 2α)],

for α �= −1 ∈ R, θ ∈ R+ and s �= eθ .

Proof The result comes analogously to the proof of Proposition 3.

Proposition 13 Let Y ∼ DQX2 (α, θ). The mgf of Y is given by

M (t) = 2[h(θ, 1, α) − (α + 1)eθ ]q(et , α, θ)

(α + 1)(et − eθ )3r(α, θ)
,

for α �= −1 ∈ R, θ ∈ R+ and t �= θ .

Proof The result comes analogously to the proof of Proposition 4.

Proposition 14 Let Y ∼ DQX2 (α, θ). The cgf of Y is given by

C (t) = log(2) + log([h(θ, 1, α) − (α + 1)eθ ]) + log(q(et , α, θ)) − log(α + 1)

−3 log(et − eθ ) − log(r(α, θ)),

for α �= −1 ∈ R, θ ∈ R+ and t �= θ .

Proof The result comes analogously to the proof of Proposition 5.

Proposition 15 Let Y ∼ DQX2 (α, θ). The cf of Y is given by

φ (t) = 2[h(θ, 1, α) − (α + 1)eθ ]q(eit , α, θ)

(α + 1)(eit − eθ )3r(α, θ)
,

for α �= −1 ∈ R, θ ∈ R+ and t ∈ R.

Proof The result comes analogously to the proof of Proposition 6.

Proposition 16 Let Y ∼ DQX2 (α, θ). The kth moment of Y about the origin is given by

μ′
k = [2θ(1−(1+θ)e−θ )]P−(k+1)

[
e−θ
]−θ2(e−θ −1)P−(k+2)

[
e−θ
]−2[h(θ, 1, α)e−θ −α−1]P−k

[
e−θ
]

2(α + 1)
,

k � 1,

for (α, θ) ∈ R
2+ and where P is the general polylogarithm function defined in

Proposition 7.

Proof The result comes analogously to the proof of Proposition 7.
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Now, from Eq. 10, the mean (μ) and the variance (σ 2) of Y are given, respectively, by

μ = b(α, θ)

(α + 1)(eθ − 1)3
,

where b(α, θ) = eθ
[
h(θ, 1, α)(eθ + 1) − 2(α + θ + 1)

]− (α + 1)(eθ − 1) and

σ 2 = c(α, θ) − [b(α, θ)]2

(α + 1)2(eθ − 1)6
,

where c (α, θ) = (α + 1)(eθ − 1)2{eθ
[
8 h (θ, −1/2,−α/4) − 10 + eθ (1/7 h(θ, 7,−14α)

−15/7) + h(θ, 1, α)(1 + eθ + e2θ )
]+ α + 1}.

Analogously to the DQX1 distribution, the index of dispersion (ID) of DQX2 distribu-
tion, whose behavior is depicted in Fig. 4, is given by

ID = c(α, θ) − [b(α, θ)]2

b(α, θ)(α + 1)(eθ − 1)3
, (10)

and the CV has the form

CV =
√

c(α, θ) − [b(α, θ)]2

b(α, θ)
.

As for the DQX1 distribution, the coefficients of skewness and kurtosis of the DQX2
distribution have extensive and very complicated expression. These expressions will also be
omitted, but Table 2 summarizes, for selected values of α and θ , the nature and the behavior
of these coefficients along with the measures previously presented in this subsection.

For this version, the ZM index is given by

ZM = 1 +
[
log
(
h(0, θ, α) − h(1, θ, α)e−θ

)− log(α + 1)
]
(α + 1)(eθ − 1)3

b(α, θ)
. (11)

The limit properties of Eq. 11 are equal to those obtained for Eq. 8, i.e., ZM → 0 as θ →
∞ and ZM → 1 as θ → 0. This implies that the DQX2 distribution is also suitable to deal

Values of θ
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Fig. 4 Behavior of the index of dispersion of DQX2 distribution
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Table 2 Theoretical descriptive statistics under DQX2 distribution

α θ Measures

Mean Variance ID CV ZM Skewness Kurtosis

0.50 0.25 8.8403 51.5098 5.8267 0.8119 0.7072 1.1689 4.8389

1.00 0.50 3.5207 11.9186 3.3853 0.9806 0.5484 1.3668 5.3793

1.50 0.75 1.9369 4.8140 2.4853 1.1328 0.4320 1.5484 6.0302

2.00 1.00 1.2209 2.4602 2.0150 1.2847 0.3427 1.7149 6.7145

2.50 1.50 0.6328 0.9701 1.5330 1.5566 0.2176 1.9473 7.7009

1.00 3.00 0.2722 0.2770 1.0178 1.9338 0.0086 1.9699 7.0331

1.50 2.00 0.4915 0.6135 1.2483 1.5937 0.1176 1.8258 6.9011

2.00 1.50 0.6903 1.0469 1.5165 1.4821 0.2150 1.8328 7.1188

2.50 1.00 1.1296 2.2902 2.0274 1.3397 0.3400 1.8163 7.2175

3.00 0.75 1.5463 3.8993 2.5217 1.2770 0.4168 1.8460 7.4645

with zero-inflation but is not indicated to model zero-deflated datasets. On the other hand,
since θ ∈ R+, the central moments of the DQX2 distribution present the same behavior
respect to those derived for the DQX1 distribution. Moreover, since equation (10) presents
the same limit properties of Eq. 7, we conclude that the DQX2 distribution may also be
considered as an alternative to model under- and overdispersed datasets.

Proposition 17 The DQX2 distribution has an increasing hazard rate.

Proof The ratio of consecutive probabilities is given by

P (Y = y + 1; α, θ)

P (Y = y; α, θ)
= e−θ(y+1)[h(y + 1, θ, α) − h(y + 2, θ, α)e−θ ]

e−θy[h(y, θ, α) − h(y + 1, θ, α)e−θ ] . (12)

One can notice that Eq. 12 is also a decreasing function on y. In this case, it follows
that P (Y = y;α, θ) is log-concave and therefore, the DQX2 distribution has an increasing
hazard rate. Hence the proof.

For the DQX2 distribution, it also holds that Eq. 9 satisfies the inequality

P2 (Y = y; α, θ) � P (Y = y; α, θ) P (Y = y + 1; α, θ) .

Proposition 18 The DQX2 distribution has heavy tails as θ approaches zero.

Proof The result comes analogously to the proof of Proposition 9.

4 Maximum Likelihood Estimation

In this section, we will address the issue of estimating the parameter θ of both versions of
the discrete quasi xgamma distribution. We have adopted the classical approach, and here
we will derive the maximum likelihood function for the DQX1 and DQX2 models. Using
these functions, one can obtain point estimates for parameter θ in each case. Moreover,
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suitable estimates for the confidence intervals (CIs) can be obtained using large sample
approximations, that are based on the asymptotic properties of the MLEs.

4.1 Inference Under DQX1 Distribution

Let Y = (Y1, . . . , Yn) a random sample of size n from the DQX1 distribution and y =
(y1, . . . , yn) its observed values. The log-likelihood function of the vector θ = (α, θ) can
be expressed as

�n (θ; y) = −n {θy + log [q (α, θ)]} +
n∑

i=1

log

[
α + θ2

2
y2
i

]
, (13)

where y is the sample mean. The MLE θ̂ of θ can be obtained by direct maximization of the
log-likelihood function (13). Hence, the components of the score vector, Uθ = (Uα, Uθ )

ᵀ,
are given by

Uα = ∂�n (α, θ; y)

∂α
= − n

q (α, θ)

∂ q (α, θ)

∂α
+ 2

n∑
i=1

1

2α + θ2y2
i

,

and

Uθ = ∂�n (α, θ; y)

∂θ
= −ny − n

q (α, θ)

∂ q (α, θ)

∂θ
+ 2θ

n∑
i=1

y2
i

2α + θ2y2
i

.

There is no closed-form solution for the MLE of θ , and therefore, standard optimiza-
tion algorithms such as Newton-Raphson based methods may be used to obtain numerical
estimates. Now, the Hessian matrix can be obtained as

H (θ) =
[

Uαα Uαθ

Uθα Uθθ

]
,

where

Uαα = n

q (α, θ)

{
1

q (α, θ)

[
∂ q (α, θ)

∂α

]2

− ∂2 q (α, θ)

∂α2

}
− 4

n∑
i=1

1[
2α + θ2y2

i

]2 ,

Uθθ = n

q (α, θ)

{
1

q (α, θ)

[
∂ q (α, θ)

∂θ

]2

− ∂2 q (α, θ)

∂θ2

}

−2

{
n∑

i=1

y2
i

2α + θ2y2
i

+ 2θ2
n∑

i=1

y4
i(

2α + θ2y2
i

)2
}

,

and

Uαθ = Uθα = ∂2�n (α, θ; y)

∂α∂θ
= n

q (α, θ)

{
1

q (α, θ)

∂ q (α, θ)

∂α

∂ q (α, θ)

∂θ
− ∂ q (α, θ)

∂α∂θ

}

−4θ

n∑
i=1

y2
i[

2α + θ2y2
i

]2 .

Now, the Fisher information of θ is given by

I (θ) = −EY
[
H (θ)

] =
[

Sαα Sαθ

Sθα Sθθ

]
,
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where

Sαα = − n

q (α, θ)

{
1

q (α, θ)

[
∂ q (α, θ)

∂α

]2

− ∂2 q (α, θ)

∂α2

}

+2nh3 (θ, 1) 3F2 [1, a1,−a1; 1 − a1, 1 + a1;h (−θ, 0)]

αh (θ, 0)
[
2αh2 (θ, 1) + θ2h (θ,−1)

] ,

where pFq is the generalized hypergeometric function (Slater 1966) and a1 = θ−1
√−2α.

Also,

Sθθ = − n

q (α, θ)

{
1

q (α, θ)

[
∂ q (α, θ)

∂θ

]2

− ∂2 q (α, θ)

∂θ2

}
+ 2nh (θ, −1)

2αh2 (θ, 1) + θ2h (θ, −1)

+ 4nθ2h3 (θ, 1) 6F5 [2, 2, 2, 2, 1 − a1, 1 + a1; 1, 1, 1, 2 − a1, 2 + a1;h (−θ, 0)]

h (2θ, 0)
(
θ2 + 2α

) [
2αh2 (θ, 1) + θ2h (θ, −1)

] ,

and

Sαθ = Sθα = − n

q (α, θ)

{
1

q (α, θ)

∂ q (α, θ)

∂α

∂ q (α, θ)

∂θ
− ∂ q (α, θ)

∂α∂θ

}

+ 4nθh3 (θ, 1) 4F3 [2, 2, 1 − a1, 1 + a1; 1, 2 − a1, 2 + a1;h (−θ, 0)]

h (2θ, 0)
(
θ2 + 2α

) [
2αh2 (θ, 1) + θ2h (θ,−1)

] .

By the maximum likelihood theory, a consistent estimator for the covariance matrix of θ̂

is obtained by the inverse of the Fisher information of θ , evaluated at θ = θ̂ , i.e.,


̂θ =
[

S−1
α̂α̂

S−1
α̂θ̂

S−1
θ̂ α̂

S−1
θ̂ θ̂

]
.

Finally, in order to obtain intervallic estimates for parameters α and θ , one can use large
sample approximations for the 100 × (1 − α) % two-sided CIs as

α̂ ± z1−α/2

√
S−1

α̂α̂
and θ̂ ± z1−α/2

√
S−1

θ̂ θ̂
,

where z1−α/2 is the upper (α/2)th percentile of the standard Normal distribution.

4.2 Inference Under DQX2 Distribution

Let Y = (Y1, . . . , Yn) a random sample of size n from the DQX2 distribution and y =
(y1, . . . , yn) its observed values. The log-likelihood function of the vector θ = (α, θ) can
be expressed as

�n (θ; y) = −n{θy + log(α + 1)} +
n∑

i=1

log
[
h(yi, θ, α) − h(yi + 1, θ, α)e−θ

]
, (14)

where y is the sample mean. The MLE θ̂ of θ can be obtained by direct maximization of the
log-likelihood function (14). Hence, the components of the score vector, Uθ = (Uα, Uθ )

ᵀ,
are given by

Uα = ∂�n (α, θ; y)

∂α
= − n

α + 1
+

n∑
i=1

1 − e−θ

h(yi, θ, α) − h(yi + 1, θ, α)e−θ
,



Methodology and Computing in Applied Probability

and

Uθ = ∂�n (α, θ; y)

∂θ

= −ny +
n∑

i=1

yi(θyi + 1) + h(yi + 1, θ, α)e−θ − (yi + 1)(θyi + θ + 1)e−θ

h(yi, θ, α) − h(yi + 1, θ, α)e−θ
.

There is no closed-form solution for the MLE of θ , and therefore, standard optimiza-
tion algorithms such as Newton-Raphson based methods may be used to obtain numerical
estimates. Now, the Hessian matrix can be obtained as

H (θ) =
[

Uαα Uαθ

Uθα Uθθ

]
,

where

Uαα = n

(α + 1)2
−

n∑
i=1

(1 − e−θ )2

[
h(yi, θ, α) − h(yi + 1, θ, α)e−θ

]2 ,

Uθθ =
n∑

i=1

{
y2
i + e−θ (yi + 1)[2(θyi + θ + 1) − (yi + 1)]

h(yi, θ, α) − h(yi + 1, θ, α)e−θ
− h(yi + 1, θ, α)e−θ

h(yi , θ, α) − h(yi + 1, θ, α)e−θ

−
[ −h(yi + 1, θ, α)e−θ

h(yi , θ, α) − h(yi + 1, θ, α)e−θ
+ yi(θyi + 1) − (yi + 1)(θyi + θ + 1)e−θ

h(yi , θ, α) − h(yi + 1, θ, α)e−θ

]2
}

,

and

Uαθ = Uθα =
n∑

i=1

{
e−θ

h(yi, θ, α) − h(yi + 1, θ, α)e−θ

−[yi(θyi + 1) − (yi + 1)(θyi + θ + 1)e−θ ](1 − e−θ )

[h(yi, θ, α) − h(yi + 1, θ, α)e−θ ]2

− h(yi + 1, θ, α)(e−θ − e−2θ )

[h(yi, θ, α) − h(yi + 1, θ, α)e−θ ]2

}
.

Now, the Fisher information of θ is given by

I (θ) = −EY
[
H (θ)

] =
[

Sαα Sαθ

Sθα Sθθ

]
,

where

Sαα = 3F2

[
1, k2(1, 1, θ) +

√
k1(α, θ)

(eθ − 1)θ
, k2(1, 1, θ) −

√
k1(α, θ)

(eθ − 1)θ
;

k2(θ + 1, 2, θ) −
√

k1(α, θ)

(eθ − 1)θ
, k2(θ + 1, 2, θ) +

√
k1(α, θ)

(eθ − 1)θ
; 1

eθ

]
− n

(α + 1)2
+

2eθ (1 − e−θ )2

2eθ (α + 1)2 − (θ2 + 2(α + θ + 1))(α + 1)
,

where pFq is the generalized hypergeometric function, with k1 and k2 defined by

k1(α, θ) = (e2θ +1)(−2α−1)+(θ2 +4α+2)eθ and k2(a1, a2, θ) = a1e
θ − a2θ − 1

(eθ − 1)θ
.
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Due to the complex form of the terms Uαθ = Uθα and Uθθ from Hessian matrix, the
components Sαθ = Sθα and Sθθ from Fisher information matrix demands massive calcu-
lations and also depends on the hypergeometric function stated for Sαα . These calculations
are not illustrated here. By the maximum likelihood theory, a consistent estimator for the
covariance matrix of θ̂ is obtained by the inverse of the Fisher information of θ , evaluated
at θ = θ̂ , i.e.,


̂θ =
[

S−1
α̂α̂

S−1
α̂θ̂

S−1
θ̂ α̂

S−1
θ̂ θ̂

]
.

Finally, in order to obtain intervallic estimates for parameters α and θ , one can use large
sample approximations for the 100 × (1 − α) % two-sided CIs as

α̂ ± z1−α/2

√
S−1

α̂α̂
and θ̂ ± z1−α/2

√
S−1

θ̂ θ̂
,

where z1−α/2 is the upper (α/2)th percentile of the standard Normal distribution.

5 Simulation Study

In this section we have estimated, using B = 10, 000 Monte Carlo simulation, the bias
(B), the root mean squared error (RMSE), the coverage probabilities (CP) and the coverage
lengths (LCP) of the MLE of θ̂ of both versions of the discrete quasi xgamma distribu-
tion. To run the simulation, we have considered α = 0.5, 1.0 and 1.5 and θ = 0.5, 1.0, 1.5
and 2.0 for sample sizes ranging from 20 to 200 by 30. The inverse-transform method
for discrete distributions (Rubinstein and Kroese 2008) was implemented to generate
the pseudo-random samples. The simulation process was performed using Ox Console
(Doornik 2007). Let β = α or θ . The quantities of interest were estimated by the following
expressions.

• B(β̂) = B−1∑B
i=1(β̂i − β);

• RMSE(β̂) = B−1/2
√∑B

i=1(β̂i − β)2;

• CPβ(n) = B−1∑B
i=1 I

{
β̂i − 1.96 ŜE

(
β̂i

)
< θ < β̂i + 1.96 ŜE

(
β̂i

)}
, where I{·}

denotes the indicator function and ŜE
(
β̂i

)
stands for the estimated asymptotic standard

error of β̂i ;
• LCPβ(n) = 3.92 B−1∑B

i=1 ŜE
(
β̂i

)
.

For both versions, the behavior of the average bias is illustrated in Figs. 5 and 6. The
average root mean squared error is showed in Figs. 7 and 8. The results obtained for the
coverage probabilities and the coverage lengths are reported in Tables 3 and 4.

From the obtained results, in each scenario and for both versions of the discrete xgamma
distribution, we have that the bias of θ̂ is positive and tends to zero when the sample size
increases. For α the bias is negative in all scenarios. Also, the mean squared error of θ̂ tends
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Fig. 5 Estimated bias for α (1 : θ = 0.5, 2 : θ = 1.0, 3 : θ = 1.5 and 4 : θ = 2.0). Upper-panel: DQX1
distribution. Lower-panel: DQX2 distribution

to zero in each case. Besides, one can notice that the coverage probabilities for parameter θ

are always higher than 94% for both discretizations and the coverage length tends to zero
when the sample size increases.

6 Application to Real-Life Data

In this section, we will present two applications using real datasets as a way to show that the
proposed models may be attractive alternatives to some standard discrete distributions. All
computations were performed using the R environment (R Development Core Team 2017).
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Fig. 6 Estimated bias for θ (1 : θ = 0.5, 2 : θ = 1.0, 3 : θ = 1.5 and 4 : θ = 2.0). Upper-panel: DQX1
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Fig. 7 Estimated RMSE for α (1 : θ = 0.5, 2 : θ = 1.0, 3 : θ = 1.5 and 4 : θ = 2.0). Upper-panel: DQX1
distribution. Lower-panel: DQX2 distribution

6.1 Corn Borers

For the first application, we will consider a dataset on the total number of borers per hill
in each plot for a control group and three treatment groups, initially analyzed by Bliss and
Fisher (1953). In a field experiment of insect pests on the corn borer, four treatments were
arranged in 15 randomized blocks. At the end of the season, eight hills of corn were selected
at random in each plot and the borers recorded from each hill. Here we will use the data
from the second treatment (Saha 2008, Table 9). This dataset will be denoted by DS1. For
the sake of comparison we have considered the Poisson (P), the Negative Binomial (NB)
and COM-Poisson (COM-P) models. The pmf of the COM-P distribution is given by

P (Y = y; λ, ν) = λy

(y!)ν

⎡
⎣ ∞∑

j=0

λj

(j !)ν
⎤
⎦

−1

, y ∈ Z+,
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Fig. 8 Estimated RMSE for θ (1 : θ = 0.5, 2 : θ = 1.0, 3 : θ = 1.5 and 4 : θ = 2.0). Upper-panel: DQX1
distribution. Lower-panel: DQX2 distribution
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Table 3 Estimated CP and LCP under DQX1 distribution

n CPα CPθ LCPα LCPθ CPα CPθ LCPα LCPθ

θ = 0.5 and α = 0.5 θ = 0.5 and α = 1.0

20 0.900 0.952 0.879 0.261 0.866 0.956 1.919 0.342

50 0.917 0.960 0.738 0.208 0.896 0.952 1.657 0.275

80 0.933 0.956 0.652 0.178 0.914 0.955 1.491 0.237

110 0.937 0.960 0.588 0.158 0.918 0.955 1.360 0.211

140 0.943 0.958 0.541 0.144 0.925 0.958 1.259 0.192

170 0.948 0.955 0.503 0.133 0.929 0.956 1.177 0.178

200 0.952 0.956 0.471 0.124 0.937 0.957 1.113 0.166

θ = 0.5 and α = 1.5 θ = 1.0 and α = 0.5

20 0.828 0.963 3.170 0.405 0.896 0.959 0.824 0.538

50 0.866 0.950 2.817 0.332 0.918 0.960 0.686 0.427

80 0.890 0.943 2.546 0.288 0.931 0.959 0.606 0.367

110 0.904 0.943 2.365 0.259 0.939 0.955 0.547 0.326

140 0.909 0.947 2.248 0.238 0.940 0.958 0.504 0.296

170 0.915 0.953 2.117 0.221 0.946 0.958 0.469 0.274

200 0.920 0.952 2.010 0.207 0.953 0.958 0.438 0.255

θ = 1.0 and α = 1.0 θ = 1.0 and α = 1.5

20 0.865 0.955 1.884 0.720 0.815 0.967 3.169 0.857

50 0.887 0.956 1.649 0.583 0.852 0.948 2.832 0.709

80 0.910 0.954 1.492 0.504 0.880 0.943 2.609 0.617

110 0.913 0.956 1.368 0.449 0.890 0.944 2.441 0.557

140 0.926 0.956 1.269 0.410 0.903 0.946 2.312 0.511

170 0.931 0.955 1.186 0.379 0.907 0.948 2.189 0.475

200 0.932 0.958 1.124 0.355 0.918 0.951 2.081 0.446

θ = 1.5 and α = 0.5 θ = 1.5 and α = 1.0

20 0.896 0.965 0.767 0.833 0.854 0.975 1.888 1.132

50 0.916 0.962 0.647 0.660 0.889 0.961 1.640 0.910

80 0.932 0.965 0.568 0.564 0.907 0.956 1.471 0.784

110 0.935 0.963 0.512 0.500 0.921 0.955 1.351 0.701

140 0.942 0.960 0.470 0.455 0.928 0.956 1.253 0.638

170 0.947 0.961 0.436 0.420 0.935 0.963 1.178 0.590

200 0.947 0.961 0.409 0.391 0.938 0.960 1.119 0.552

θ = 1.5 and α = 1.5 θ = 2.0 and α = 0.5

20 0.802 0.986 3.242 1.359 0.898 0.977 0.754 1.197

50 0.848 0.955 2.862 1.118 0.920 0.961 0.626 0.940

80 0.877 0.947 2.630 0.974 0.936 0.964 0.549 0.798

110 0.891 0.949 2.451 0.877 0.939 0.963 0.496 0.706

140 0.902 0.943 2.331 0.807 0.946 0.960 0.453 0.640

170 0.910 0.946 2.212 0.750 0.950 0.957 0.420 0.589

200 0.911 0.950 2.116 0.704 0.952 0.956 0.393 0.549
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Table 3 (continued)

n CPα CPθ LCPα LCPθ CPα CPθ LCPα LCPθ

θ = 2.0 and α = 1.0 θ = 2.0 and α = 1.5

20 0.851 0.995 1.919 1.624 0.817 0.998 3.486 1.989

50 0.884 0.979 1.647 1.294 0.836 0.984 2.986 1.608

80 0.905 0.971 1.470 1.108 0.863 0.970 2.715 1.392

110 0.912 0.966 1.348 0.984 0.879 0.962 2.517 1.243

140 0.919 0.969 1.246 0.893 0.893 0.955 2.378 1.136

170 0.926 0.970 1.167 0.824 0.899 0.954 2.236 1.052

200 0.931 0.966 1.109 0.770 0.906 0.954 2.139 0.986

Table 4 Estimated CP and LCP under DQX2 distribution

n CPα CPθ LCPα LCPθ CPα CPθ LCPα LCPθ

θ = 0.5 and α = 0.5 θ = 0.5 and α = 1.0

20 0.921 0.942 1.032 0.268 0.919 0.945 2.157 0.339

50 0.938 0.945 0.868 0.211 0.942 0.938 1.853 0.272

80 0.952 0.947 0.768 0.180 0.946 0.941 1.647 0.233

110 0.956 0.946 0.693 0.159 0.953 0.940 1.506 0.208

140 0.961 0.949 0.637 0.145 0.958 0.942 1.391 0.189

170 0.964 0.943 0.590 0.133 0.963 0.942 1.298 0.174

200 0.964 0.948 0.553 0.124 0.964 0.942 1.224 0.163

θ = 0.5 and α = 1.5 θ = 1.0 and α = 0.5

20 0.873 0.952 3.287 0.388 0.912 0.961 1.084 0.555

50 0.917 0.941 2.958 0.320 0.930 0.956 0.900 0.436

80 0.941 0.939 2.702 0.278 0.939 0.953 0.792 0.371

110 0.955 0.938 2.507 0.249 0.949 0.956 0.717 0.329

140 0.959 0.940 2.358 0.228 0.949 0.959 0.660 0.298

170 0.960 0.945 2.237 0.212 0.951 0.955 0.615 0.275

200 0.967 0.948 2.107 0.198 0.962 0.955 0.577 0.256

θ = 1.0 and α = 1.0 θ = 1.0 and α = 1.5

20 0.908 0.959 2.203 0.696 0.871 0.968 3.433 0.800

50 0.928 0.950 1.886 0.557 0.914 0.948 3.026 0.655

80 0.943 0.948 1.675 0.478 0.938 0.943 2.800 0.572

110 0.947 0.953 1.528 0.425 0.947 0.945 2.585 0.512

140 0.958 0.952 1.417 0.387 0.953 0.946 2.418 0.468

170 0.952 0.951 1.318 0.357 0.957 0.948 2.287 0.434

200 0.960 0.951 1.245 0.333 0.959 0.950 2.171 0.407

θ = 1.5 and α = 0.5 θ = 1.5 and α = 1.0

20 0.923 0.984 1.252 0.918 0.891 0.982 2.408 1.128

50 0.926 0.965 1.036 0.721 0.915 0.963 2.026 0.894

80 0.940 0.964 0.909 0.611 0.933 0.957 1.799 0.763

110 0.943 0.963 0.819 0.539 0.941 0.957 1.642 0.677

140 0.951 0.960 0.757 0.489 0.951 0.955 1.510 0.614

170 0.953 0.962 0.703 0.449 0.957 0.959 1.424 0.566

200 0.957 0.964 0.662 0.418 0.959 0.959 1.344 0.528
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Table 4 (continued)

n CPα CPθ LCPα LCPθ CPα CPθ LCPα LCPθ

θ = 1.5 and α = 1.5 θ = 2.0 and α = 0.5

20 0.863 0.991 3.725 1.286 0.985 1.000 1.600 1.416

50 0.910 0.964 3.225 1.045 0.950 0.995 1.292 1.115

80 0.928 0.954 2.923 0.899 0.944 0.985 1.120 0.941

110 0.942 0.955 2.706 0.804 0.947 0.977 1.013 0.832

140 0.944 0.951 2.538 0.735 0.951 0.967 0.929 0.750

170 0.946 0.951 2.385 0.679 0.958 0.963 0.866 0.689

200 0.954 0.955 2.251 0.634 0.960 0.963 0.814 0.641

θ = 2.0 and α = 1.0 θ = 2.0 and α = 1.5

20 0.906 1.000 2.825 1.717 0.868 0.999 4.264 1.942

50 0.908 0.992 2.364 1.360 0.891 0.992 3.667 1.568

80 0.925 0.975 2.086 1.154 0.910 0.974 3.325 1.347

110 0.931 0.969 1.897 1.020 0.919 0.965 3.026 1.194

140 0.943 0.966 1.760 0.922 0.927 0.960 2.842 1.087

170 0.946 0.965 1.647 0.849 0.937 0.955 2.667 1.001

200 0.951 0.964 1.555 0.788 0.943 0.955 2.533 0.934

where λ ∈ R+ and ν ∈ R+ ∪ {0}.
Table 5 reports the MLEs, the asymptotic standard errors and some goodness-of-fit (gof)

measures for each fitted model. One can notice that both versions of the discrete quasi
xgamma distributions are presenting the smallest values of AIC and BIC criteria. Also,
by the expected frequencies presented in Table 6, one we can conclude that the DQX1
distribution provides the best fit among all models considered here.

6.2 Outbreaks Strikes

For the second application, we will consider a dataset from the literature related to the
number of outbreaks of strikes in the UK coal mining industries in four successive week

Table 5 Parameter estimates and gof measures for each model (DS1)

Model Parameter MLE (SE) AIC BIC χ2 (p-value) d.f.

DQX1 α 0.4824 (0.1521) 543.61 549.18 1.23 (0.942) 5

θ 0.6601 (0.0565)

DQX2 α 0.5684 (0.2026) 544.34 549.91 1.80 (0.876) 5

θ 0.6237 (0.0535)

COM-P λ 1.7604 (0.4023) 548.27 553.84 4.89 (0.429) 5

ν 3.1668 (0.2718)

NB μ 1.0412 (0.1200) 545.98 551.56 3.41 (0.637) 5

φ 0.1962 (0.0732)

P λ 3.1667 (0.1624) 615.01 617.80 164.55 (< 0.001) 6
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Table 6 Observed and expected frequencies from each fitted model (DS1)

Counts Observed DQX1 DQX2 COM-P NB P

0 24 23.0443 22.1321 19.6019 20.0322 5.0573

1 16 17.2879 18.8819 22.1785 20.8576 16.0147

2 16 17.2735 17.8497 19.6742 18.9557 25.3565

3 18 16.1094 15.8359 15.8500 15.9099 26.7652

4 15 13.5218 12.9872 12.1237 12.6207 21.1892

6 15 18.0172 17.2811 15.4781 16.6029 20.5025

9 12 11.0304 10.9533 10.1648 10.7823 4.9186

� 10 4 3.7154 4.0789 4.9287 4.2388 0.1961

Estimated expected frequencies in bold relate to those closer to the observed ones

periods during the years 1948-1959 (Kendall 1961). This dataset presents underdispersion
characteristics since ID ≈ 0.75. Other authors including Castillo and Pérez-Casany (1998),
Ridout and Besbeas (2004) and Chakraborty and Chakravarty (2012) have also used this
data for illustration purposes. This dataset will be denoted by DS2. We have also fitted the
NB distribution, but it is worthwhile to mention that their maximum likelihood estimates
are unique only in overdispersed case.

Table 7 reports the MLEs, the asymptotic standard errors and some gof measures for each
fitted model. One can notice that both versions of the discrete quasi xgamma distributions
are presenting the smallest values of AIC and BIC criteria. On the other hand, the COM-
P distribution also has presented a reasonably fit. Besides, by Table 8, one we can notice
that the DQX2 distribution better fits lower counts when compared with the other fitted
models. Although the AIC and BIC values of the COM-P distribution are very close to those
provided by the DQX1 and DQX2 distributions, from the chi-square statistic, we can affirm
that the DQX2 fits better than DQX1 and COM-P models. In addition, our proposals are not
defined in terms of an infinite sum as the case of the COM-P distribution.

Table 7 Parameter estimates and gof measures for each model (DS2)

Model Parameter MLE (SE) AIC BIC χ2 (p-value) d.f.

DQX1 α 0.1758 (0.0368) 379.12 385.22 1.92 (0.383) 2

θ 2.3016 (0.1507)

DQX2 α -0.1097 (0.0880) 378.79 384.89 1.51 (0.470) 2

θ 2.1335 (0.1507)

COM-P λ 1.4830 (0.2521) 380.02 386.12 2.89 (0.236) 2

ν 1.7686 (0.2945)

NB μ 0.9936 (0.0801) 388.23 394.33 10.74 (0.005) 2

φ 112.8508 (187.3175)

P λ 0.9936 (0.0798) 388.92 387.11 10.41 (0.015) 1
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Table 8 Observed and expected frequencies from each fitted model (DS2)

Counts Observed DQX1 DQX2 COM-P NB P

0 46 46.0551 46.0280 47.4834 58.0018 57.7583

1 76 74.0515 74.9294 70.4349 57.1351 57.3880

2 24 28.2635 26.9609 30.6592 28.3900 28.5101

3 9 6.3074 6.5022 6.5141 9.4871 9.4424

� 4 1 1.3225 1.5795 0.9084 2.9859 2.9012

Estimated expected frequencies in bold relate to those closer to the observed ones

7 Concluding Remarks

In this paper, two versions of the discrete quasi xgamma distribution were introduced as
alternatives to model count datasets presenting overdispersion or underdispersion. To derive
the proposed models, we have considered the methods of infinite series and survival func-
tion. The main statistical properties as the mean, the variance, the generating moments and
the coefficients of variation, skewness, and kurtosis for each version were derived. Also, it
was shown that both versions of the discrete quasi xgamma distribution are suitable options
to deal with zero-inflated datasets. Moreover, we have derived the log-likelihood, the score
function and we have considered asymptotic intervallic estimation for the parameters of
both versions. Also, we have performed an intensive Monte Carlo simulation study where
the bias, the mean squared error and the coverage lengths of the MLEs as well the coverage
probability of the asymptotic CIs were computed. These measures have indicated the suit-
ability of the considered methodology. The usefulness of the proposed models was assessed
by fitting them to real datasets provided by literature. The model selection was performed
by using the AIC and the BIC criteria. The goodness-of-fit was evaluated through the χ2

statistic. The obtained results have demonstrated that the DQX1 and DQX2 distributions
are competitive with standard discrete models as the Poisson, the Negative Binomial and
the COM-Poisson distributions. As a final note, we would like to mention that we are cur-
rently developing an R package containing a complete toolkit to fit the proposed models.
In the current stage, the executable scripts used to fit both versions of the discrete xgamma
distribution can be made available by the authors upon justified request.
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Castillo JD, Pérez-Casany M (1998) Weighted poisson distributions for overdispersion and underdispersion
situations. Ann Inst Stat Math 50(3):567–585

Chakraborty S (2015a) A new discrete distribution related to generalized Gamma distribution and its
properties. Communications in Statistics - Theory and Methods 44(8):1691–1705

Chakraborty S (2015b) Generating discrete analogues of continuous probability distributions - a survey of
methods and constructions. Journal of Statistical Distributions and Applications 2(1):1–30

Chakraborty S, Chakravarty D (2012) Discrete Gamma distributions: properties and parameter estimation.
Communications in Statistics - Theory and Methods 41(18):3301–3324

Chakraborty S, Chakravarty D (2016) A new discrete probability distribution with integer support on
(−∞,+∞). Communications in Statistics - Theory and Methods 45(2):492–505

Chakraborty S, Gupta RD (2015) Exponentiated Geometric distribution: another generalization of geometric
distribution. Communications in Statistics - Theory and Methods 44(6):1143–1157

Collett D (2003) Modelling survival data in medical research, 2nd. Chapaman and Hall, New York
Doornik JA (2007) Object–oriented matrix programming using Ox, 3rd. Timberlake Consultants Press and

Oxford, London
Doray LG, Luong A (1997) Efficient estimators for the Good family. Commun Stat Simul Comput

26(3):1075–1088
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