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ABSTRACT 

Although the two-parameter Beta distribution is the standard distribution for 

analyzing data in the unit interval, there are in the literature some useful and 

interesting alternatives which are often under-used. An example is the two 

parameter complementary Beta distribution, introduced by Jones (2002) and, to 

the best of our knowledge, used only by Iacobellis (2008) as a probabilistic 

model for the estimation of T year flow duration curves. In his paper the 

parameters of complementary Beta distribution were successfully estimated, 

perhaps due to its simplicity, by means of the L-moments method. The objective 

of this paper is to compare, using Monte Carlo simulations, the bias and 

mean-squared error, of the estimators obtained by the methods of L-moments 

and maximum likelihood. The simulation study showed that the maximum 

likelihood method has bias and mean -squared error lower than L-moments. It is 

also revealed that the parameters estimated by the maximum likelihood are 

negatively biased, while by the L-moments method the parameters are positively 

biased. Data on relative indices from annual temperature extremes (percentage 

of cool nights, percentage of warm nights, percentage of cool days and 

percentage of warm days) in Uruguay are used for illustrative purposes. 
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1 Introduction 

It is well known that Beta distribution in its standard form is the most important 

probability distribution for data analysis with support on the unit interval. Its probability 

density function (p.d.f.) is very versatile and several uncertainties may be useful modeled by 

them. A random variable 𝑋 has a Beta distribution with shape parameters 𝛼 and 𝛽, both 

positive, if its p.d.f is expressed as: 

𝑓(𝑥|𝛼, 𝛽) =
1

𝐵(𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1 (1) 

where 0 < 𝑥 < 1 and 𝐵(𝛼, 𝛽) = ∫ 𝑡𝛼1

0
(1 − 𝑡)𝛽−1𝑑𝑡 is the complete Beta function, also 

called the Euler integral of the first kind. The corresponding cumulative distribution function 

(c.d.f.) is the regularized incomplete Beta function and written as: 

𝐹(𝑥|𝛼, 𝛽) =
𝐵𝑥(𝛼, 𝛽)

𝐵(𝛼, 𝛽)
 (2) 

where 𝐵𝑥(𝛼, 𝛽) denotes the incomplete Beta function, i.e 𝐵𝑥(𝛼, 𝛽) = ∫ 𝑡𝛼−1𝑥

0
(1 − 𝑡)𝛽−1𝑑𝑡. For  

a detailed discussion of Beta distribution interested readers may refer to Johnson et al. (1995), 

Gupta and Nadarajah (2004) and Nadarajah and Kotz (2007). 

Although some distributions also present these characteristics, they are few used in 

applications. A probability distribution related to Beta the distribution that has not received 

much attention in the literature was introduced by Jones (2002) and it is obtained by 

switching the roles of c.d.f. and quantile function of the Beta distribution. Thus, its c.d.f. is 

given by: 

𝐹(𝑥|𝛼, 𝛽) = ∮
𝑥

(𝛼, 𝛽) (3) 

where 0 < 𝑥 < 1  and ∮𝑥
(𝛼, 𝛽)  denotes the inverse of the incomplete Beta ratio, i.e 

𝑄(𝑥|𝛼, 𝛽) = 𝐹−1(𝑥|𝛼, 𝛽),  given in (2). The corresponding p.d.f. is  
𝑑

𝑑𝑥
Q(𝑥|𝛼, 𝛽)  and 

written as follows: 

𝑓(𝑥|𝛼, 𝛽) = 𝐵(𝛼, 𝛽)|[∮
𝑥

(𝛼, 𝛽)]
1−𝛼

[1 − ∮
𝑥

(𝛼, 𝛽)]
1−𝛽

. (4) 
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Jones (2002) named this distribution as complementary Beta distribution (CB), and in the 

same way as the Beta distribution it is symmetric if and only if 𝛼 = 𝛽. Also, the parameters 

𝛼 and 𝛽 are symmetrically related by 𝑓(𝑥|𝛼, 𝛽) = 𝑓(1 − 𝑥|𝛽, 𝛼), which means that if 𝑋 

has CB distribution with parameters 𝛼 and 𝛽  then 1 − 𝑋  has a CB distribution with 

parameters 𝛽 and 𝛼. The particular case of (4) for 𝛼 = 𝛽 = 1 is the standard Uniform 

distribution. When 𝛽 = 1 the CB distribution reduces to the power function distribution 

with parameter 1/α. For 𝛼 = 1 we have the Beta distribution with parameters 1 and 1/𝛽. 

In Jones (2007) was showed that CB distribution is a special case, when 𝑎 = 1 − 𝛼 and 

𝑏 = 1 − 𝛽, of the family of univariate continuous distributions with density function 𝑓(∙) 

and distribution function 𝐹(∙) defined through the relation 𝑓(𝑥) = 𝐹𝑎(𝑥)[1 − 𝐹(𝑥)]𝑏. 

In Figure 1, for selected values of 𝛼 and 𝛽, the behavior of (1) is displayed can be 

showed that (1) has the same basic shape properties of the Beta distribution i.e, for (𝛼, 𝛽) <

1 it is unimodal; (𝛼, 𝛽) > 1 it is U-shaped; (𝛼 < 1 and 𝛽 > 1) it is J-shaped and for (𝛼 >

1 and 𝛽 < 1) reverse J-shaped. These behaviors are quite similar to the Beta distribution 

with parameters 1/𝛼 and 1/𝛽. Some additional details about CB distribution can be found 

in Nadarajah and Kotz (2007). 

[Figure 1 about here.] 

The CB distribution does not have explicit moments or order 𝑘 but for 𝑘 = 1 and 𝑘 =

2 the following expressions are provided: 

𝐸(𝑋) =
𝛽

𝛼+𝛽
 𝑎𝑛𝑑 𝐸(𝑋2) =

2𝐵(2𝛼,2𝛽+1)

𝛼[𝐵(𝛼,𝛽)]2  3𝐹2(𝛼 + 𝛽, 1,2𝛼; 𝛼 + 1,2(𝛼 + 𝛽) + 1; 1)  

where 3𝐹2 denotes the generalized hypergeometric function (Gradshteyn and Ryzhik, 1994, 

formula 7.512.5). From Dixon (1902) the definition of (𝑎, 𝑏, 𝑐; 𝑑, 𝑒; 1) is: 

3𝐹2(𝑎, 𝑏, 𝑐; 𝑑, 𝑒; 1) =
(𝑎/2)!(𝑎−𝑏)!(𝑎−𝑐)!(𝑎/2−𝑏−𝑐)!

𝑎!(𝑎/2−𝑏)!(𝑎/2−𝑐)!(𝑎−𝑏−𝑐)!
,  

where 1 + a/2 − b − c has a positive real part, 𝑑 = 𝑎 − 𝑏 + 1 and 𝑒 = 𝑎 − 𝑐 + 1. 

The mean of CB distribution matches the mean of the Beta distribution with parameters 

1/𝛼 and 1/𝛽. In Figure 2 the behaviors of the mean, variance, skewness and kurtosis of the 

CB distribution are illustrated as a function of 𝛼 for some values of 𝛽. It is observed that 

the skewness may be negative, which implies that CB distribution might be useful for 

modeling left-skewed data. 

[Figure 2 about here.] 
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In spite of CB distribution has various attractive properties and mostly ones that are 

complementary to those of the Beta distribution, it has been neglected in the literature. As far 

as we know, the only real data analysis appeared in Iacobellis (2008). In his paper the CB 

distribution has been used as a probabilistic model for estimation of 𝑇 year flow duration 

curves. Its parameters were successfully estimated by means of L-moments. 

To the best of our knowledge nothing has been done regarding comparisons among 

estimators of the CB distribution. In this paper our main goal is to compare, mainly, by 

Monte Carlo simulation and real applications, the performance of estimators obtained by the 

methods of L -moments and maximum likelihood. In the same direction, Erişoǧlu and 

Erişoǧlu (2014) compared the L-moments estimation with maximum likelihood method to 

estimate the parameters related to mixture of Weibull distributions. 

The paper is outline as follows. In Section 2 the L-moments and maximum likelihood 

methods are presented and discussed. The simulations results used to compare these methods, 

in terms of relative bias and relative root mean-squared error, are presented in Section 3. In 

Section 4, data on annual temperature extremes in Uruguay are used for illustrative purposes. 

Some concluding remarks in Section 5 finalize the paper. 

 

2 Different methods of estimation 

In this section, the estimation of parameters 𝛼 and 𝛽 of CB distributionis consideredby 

the L-moments and maximum likelihood methods. 

2.1 Method of L-moments 

The L-moments, whose theory was unified by Hosking (1990), are linear combinations of 

order statistics and have lower sample variances and are more robust against outliers when 

compared to the conventional moments. Analogously to the conventional method of 

moments, the L-moments method obtains parameter estimates by equating the first sample 

L-moments to the corresponding theoretical quantities. The theoretical L-moments are 

defined by the quantile function, i.e., the inverse of cumulative distribution function. 

Following, for example Hosking and Wallis (1997), the first and second sample 

L-moments are calculated, respectively, from the expressions: 

𝑙1 =
1

𝑛
∑ 𝑥𝑖:𝑛

𝑛

𝑖=1

 and 𝑙2 =
2

𝑛(𝑛 − 1)
∑(𝑖 − 1)

𝑛

𝑖=2

𝑥𝑖:𝑛 − 𝑙1 (5) 
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where 𝑥𝑖:𝑛 denotes the 𝑘th smallest observation from a sample of size 𝑛. 

For the CB distribution Jones (2002) showed that first and second theoretical L-moments 

are given, respectively, as: 

𝜆1(𝛼, 𝛽) =
𝛽

𝛼 + 𝛽
 and 𝜆2(𝛼, 𝛽) =

𝛼𝛽

(𝛼 + 𝛽)(𝛼 + 𝛽 + 1)
. (6) 

Consequently, assuming that 𝒙 = (𝑥1, … , 𝑥𝑛)  is a random sample from (4), the 

L-moments estimates for 𝛼 and 𝛽, i.e �̂�𝐿𝑀𝐸 and �̂�𝐿𝑀𝐸 are obtained, respectively, from 

the following expressions: 

�̂�𝐿𝑀𝐸 =
𝑙2(𝑙1 − 1)

𝑙1
2 − 𝑙1 + 𝑙2

 𝑎𝑛𝑑 �̂�𝐿𝑀𝐸 =
𝑙2𝑙1

𝑙1
2 − 𝑙1 + 𝑙2

. (7) 

2.2 Method of maximum likelihood 

The maximum likelihood method is an alternative to L-moments for parameters 

estimation. The log-likelihood function for a random sample 𝒙 = (𝑥1, … , 𝑥𝑛) from (4) is 

written as: 

ℓ(𝜽|𝑥) = 𝑛log𝐵(𝛼, 𝛽) + (1 − 𝛼) ∑ log

𝑛

𝑖=1

[∮
𝑥𝑖

(𝛼, 𝛽)] 

+(1 − 𝛽) ∑ log

𝑛

𝑖=1

[1 − ∮
𝑥𝑖

(𝛼, 𝛽)]. 

(8) 

The maximum likelihood estimates �̂�𝑀𝐿𝐸  and �̂�𝑀𝐿𝐸  of 𝛼  and 𝛽 , respectively, are 

obtained numerically by maximizing, with respect to 𝛼 and 𝛽, the log-likelihood function 

(8). Although it is necessary to solve a system of nonlinear equations to obtain �̂�𝑀𝐿𝐸 and 

�̂�𝑀𝐿𝐸, this method has some advantages over the L-moments method. For example, using 

asymptotic arguments, it is trivial to estimate functions of 𝛼 and 𝛽 and their standard 

errors as well as to build confidence intervals (Edwards, 1992). As pointed out by Glass 

(2000), Hosking (1990) obtained an asymptotic result specifying the sample L-moments have 

a multivariate normal distribution as 𝑛 → ∞. However, the standard errors depends on the 

distribution of the variable. So in order to be able to build confidence intervals it would be 

necessary to know the distribution of the variable. 
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3 Simulation results 

In this section the results are showed from a Monte Carlo experiment designed to 

investigate the sampling properties of the aforementioned estimation methods and identify 

those with the lowest bias and root mean-squared error for small to large sized samples 

drawn from the CB distribution. Sample sizes have been taking ranging from 10 to 100 by 10 

and parameter values (𝛼, 𝛽) = (0.2, 0.2), (0.2, 1.5), (0.5, 0.2), (0.5, 0.5), (1.0, 0.2) and (1.5, 

1.5) leading to all possible shapes of (4), showed in Figure 1. For each combination of 𝑛, 𝛼 

and 𝛽 𝑀 = 10,000 pseudo-random samples from the CB distribution have been generated 

using the inverse transform method. The relative bias (RBias) and relative root mean-squared 

error (RRMSE) were calculated as follows: 

RBias =
1

𝑀
∑ (

𝜃𝑗 − 𝜃𝑗

𝜃𝑗
)

𝑀

𝑗=1

   and   RRMSE = √
1

𝑀
∑ (

𝜃𝑗 − 𝜃𝑗

𝜃𝑗
)

𝑀

𝑗=1

2

  

where 𝜽𝒋  and �̂�𝒋  are the 𝑗th  coordinates of 𝜽 = (𝛼, 𝛽)  and �̂� = (�̂�𝑀𝐿𝐸, �̂�𝑀𝐿𝐸) or �̂� =

(�̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸). 

All simulations were performed in Ox Console (Doornik, 2007), using the MaxBFGS 

function to obtain the maximum likelihood estimates of 𝛼 and 𝛽, while for the L-moments 

method the estimates were obtained analytically from the equations presented in (7). 

Plots of the estimated relative bias and estimated RRMSE versus 𝑛, for all parameters 

combinations, are showed in Figures 3 and 4, respectively. Figure 3 shows smaller estimated 

relative bias of �̂�𝑀𝐿𝐸 and �̂�𝑀𝐿𝐸 as compared with the estimated relative bias of �̂�𝐿𝑀𝐸 and 

�̂�𝐿𝑀𝐸 , mainly for small and moderate sample sizes. In these plots, it was also observed that 

MLEs are negatively biased and LMEs are positively biased, moreover, both methods are 

returning asymptotically unbiased estimates. However, in the maximum likelihood method 

the estimated bias of 𝛼 varies from -0.042 to -0.006 whereas in the L-moments method the 

variation is from 0.004 to 0.238. Similar variations are observed for 𝛽. 

Figure 4 shows that the estimated RRMSE for �̂�𝑀𝐿𝐸 and �̂�𝑀𝐿𝐸 are smaller than �̂�𝐿𝑀𝐸 

and �̂�𝐿𝑀𝐸, especially for small sample sizes. The estimated RRMSE for �̂�𝑀𝐿𝐸 varies from 

0 .100 to 0.344 whereas for �̂�𝐿𝑀𝐸 the variation is from 0.101 to 0.641. Similar variations are 

observed for �̂�𝑀𝐿𝐸 and �̂�𝐿𝑀𝐸 . 

Also, Figures 3 and 4 are showing that the estimated bias and estimated RRMSE are less 

sensitive to the values of 𝛼 and 𝛽 in the MLE method. 
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[Figure 3 about here.] 

[Figure 4 about here.] 

Finally, the overall performance was assessed of each estimation method, regardless of 

the parameters values, through two measures introduced in Cribari-Neto and Vasconcellos 

(2002). The authors called these measures as integrated bias squared (IBSQ) and average 

root mean-squared error (ARNSE). They are defined as follows: 

𝐼𝐵𝑆𝑄(𝑘) = √
1

6
∑(𝑟ℎ,𝑘)

2
6

ℎ=1

   and   𝐴𝑅𝑀𝑆𝐸(𝑘) =
1

6
∑ 𝑅𝑀𝑆𝐸ℎ,𝑘

6

ℎ=1

  

where 𝑟ℎ,𝑘 and 𝑅𝑀𝑆𝐸ℎ,𝑘 are the biases and the root mean-squared errors. These quantities 

are calculated for scenario 𝑘, 𝑘 = 1, . . ,6 and the results are showed in Figure 5. It is 

observed that the integrated bias squared and average root mean-squared error are smaller in 

the MLE, corroborating with the results from Figures 3 and 4. 

[Figure 5 about here.] 

 

4 Applications 

In this section, the performance of the two estimation methods will be compared, 

considering four data sets on climate indices based on time series of temperature. The indices 

are TN10p, TN90p, TX10p and TX90p. From Dashkhuu et al. (2015), TN10p is an index 

measuring the percentage of time with daily minimum temperatures lower than the 10th 

percentile of minimum temperatures calculated for each calendar day (with reference to the 

climatological norm) using a running 5-day window. This is a measure of the percentage of 

unseasonably low-temperature nights (cool nights) in a year. Similarly, TX10p is an index 

showing the percentage of unseasonably low-temperature days (cool days). TN90p and 

TX90p are indices corresponding to the percentage of unseasonably high-temperature nights 

(warm nights) and days (warm days) in a year, respectively. Various additional details 

related to these and various other indexes can be found, for example, in Donat et al. (2013). 

According to (Zhang et al., 2011) such indices allow straightforward monitoring of 

trends in the frequency or intensity of events, which can cause stress to humans or the 

environment. In this view, a probability distribution can be used for characterizing the 

indices behavior. Furthermore, it is important to consider a probability distribution that 

represents the nature of random variable, then the CB distribution it is a good choice, since it 

is flexible and its domain is in the unit interval. 
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The indices from Rocha station in Uruguay available in ETCCDI 

(http://etccdi.pacificclimate.org/index.shtml) have been considered and the historical series 

from 1950 to 2000. To the best of our knowledge, these indices have not been previously 

analyzed in the literature. Some descriptive measures for these indices are presented in Table 

1. 

[Table 1 about here.] 

In Table 2 the parameter estimates and the corresponding standard errors are reported, 

under the maximum likelihood and L-moments methods, for the temperature extremes 

indices. It is possible to observe that the estimates are quite similar, except for TX90p indice. 

It is also interesting to note that the MLEs provides lower standard errors than the LME, 

which means more accurate estimates than LME. 

[Table 2 about here.] 

In order to test whether the data sets fits the CB distribution, three goodness-of-fit tests 

have been performed based on Kolmogorov-Smirnov (KS), Cramér-von-Mises (CvM) and 

Anderson-Darling (AD) statistics. The results are given in Table 3.From these table it is 

possible to conclude that CB distribution provides a good fit to these data sets and the 

estimation methods are quite similar for TN10p, TN90p and TX10p indices, while for the 

TX90p indice the MLE provide better fit than the LME. These conclusion are also supported 

by Figure 6, where we plot the empirical versus fitted CDF. 

[Table 3 about here.] 

[Figure 6 about here.] 

Finally, to assess and compare the fits by the two estimation methods the concordance 

correlation coefficient (CCC) due to Lin (1989) was used. CCC is used to evaluate the 

agreement between the empirical and theoretical probabilities by measuring the variation of 

their linear relationship from the 45° line through the origin (Lin, 1992). It is estimated as 

follows: 

�̂�𝑐 =
2�̂�12

�̂�1
2 + �̂�2

2 + (�̂�1 − �̂�2)2
 (9) 

where �̂�1 and �̂�1
2
 denote the sample mean and variance of empirical probabilities, �̂�2 and �̂�2

2 

denote the sample mean and variance of theoretical probabilities, and �̂�12 is the covariance 

between the empirical and theoretical probabilities. 

  

http://etccdi.pacificclimate.org/index.shtml
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In Table 4 is presented, for MLE and LME the estimated CCC (�̂�𝑐) between the 

empirical and theoretical probabilities, its Bootstrap bias-corrected version (�̃�𝑐), the 95% 

Bootstrap confidence interval and the descriptive scale suggested by McBride (2005). From 

this table it is evident that CB distribution provides a good fit to the indices, since the CCC 

values were higher than 0.98. Finally, it is possible to see that LME has marginal largest 

values of CCC, indicating a better estimate of parameter, hence the best fit to these indices. 

[Table 4 about here.] 

 

5 Conclusions 

The CB distribution has been introduced by Jones (2002) and has not drawn attention for 

modeling data on the unit interval despite of the flexibility it provides in terms of the variety 

of shapes it can accommodate. In this paper it was compared, via intensive simulation, two 

methods of estimation of its parameters, namely the L-moments method and the maximum 

likelihood method. From our simulations it was discovered that the estimates are 

asymptotically unbiased and consistent, regardless of the estimation method. However, in 

small samples, MLE is the most appropriate method. Four applications considering 

temperature extremes were given to demonstrate that the CB distribution can be used quite 

effectively to provide good fits. 
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Table 1: Descriptive measures for TN10p, TN90p, TX10p and TX90p. 

Indices n Missing Min Mean Median Max Std Dev Skewness Kurtosis 

TN10p 38 13 0.0446 0.1008 0.0948 0.1519 0.0300 0.1161 1.8875 

TN90p 38 13 0.0567 0.1026 0.0998 0.1650 0.0299 0.2908 2.1358 

TX10p 35 16 0.0503 0.1077 0.1031 0.1773 0.0284 0.4404 2.7756 

TX90p 35 16 0.0275 0.0987 0.1014 0.1764 0.0318 0.0268 3.0734 

 

Table 2: Parameter estimates (standard errors) for the annual temperature extremes indices. 

 MLE LME 

Indices �̂� �̂� �̂� �̂� 

TN10p 0.2129 (0.0318) 0.0239 (0.0037) 0.2137 (0.0331) 0.0239 (0.0039) 

TN90p 0.2042 (0.0304) 0.0234 (0.0036) 0.2078 (0.0321) 0.0238 (0.0038) 

TX10p 0.1753 (0.0268) 0.0211 (0.0034) 0.1803 (0.0288) 0.0218 (0.0036) 

TX90p 0.2288 (0.0356) 0.0254 (0.0042) 0.2277 (0.0371) 0.0249 (0.0043) 

 

Table 3: One-sample Kolmogorov-Smirnov goodness-of-fit test, Cramer-von Mises goodness-of- 

fit test and Anderson-Darling goodness-of-fit test (p-values). 

               KS                                   CvM                                AD                            

Indices MLE LME MLE LME MLE LME 

TN10p 0.1217 (0.1021) 0.1239 (0.1505) 0.0846 (0.1140) 0.0833 (0.1872) 0.5416 (0.1258) 0.5408 (0.1598) 

TN90p 0.1052 (0.2465) 0.1040 (0.3516) 0.0555 (0.3361) 0.0506 (0.4882) 0.3555 (0.3981) 0.3333 (0.4874) 

TX10p 0.0894 (0.5844) 0.0815 (0.8027) 0.0326 (0.7339) 0.0319 (0.8083) 0.2225 (0.7999) 0.2132 (0.8357) 

TX90p 0.1149 (0.2030) 0.1286 (0.1486) 0.0689 (0.2121) 0.0855 (0.1696) 0.4356 (0.2499) 0.4825 (0.2206) 

 

Table 4: Concordance correlation coefficient between empirical and theoretical probabilities. 

Indices Method �̂�𝑐 �̃�𝑐 LI LS Strength of agreement 

TN10p 
MLE 0.9876 0.9884 0.9782 0.9932 Substantial 

LME 0.9878 0.9885 0.9783 0.9933 Substantial 

TN90p 
MLE 0.9920 0.9925 0.9858 0.9956 Almost perfect 

LME 0.9927 0.9931 0.9869 0.9959 Almost perfect 

TX10p 
MLE 0.9949 0.9952 0.9905 0.9974 Almost perfect 

LME 0.9950 0.9953 0.9907 0.9974 Almost perfect 

TX90p 
MLE 0.9885 0.9892 0.9792 0.9935 Substantial 

LME 0.9857 0.9868 0.9727 0.9923 Substantial 
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Figure 1: Probability density function of CB distribution for selected values of 𝛼 and 𝛽. (left 

upper panel: 𝛼 = 0.2, right upper panel: 𝛼 = 0.5, left lower panel: 𝛼 = 1.0 and right lower panel: 

𝛼 = 1.5; solid line: 𝛽 = 0.2, dashed line: 𝛽 = 0.5, dotted line: 𝛽 = 1.0 and dotdash line: 𝛽 =

1.5). 

 

  

  

Figure 2: Behavior of the mean, variance, skewness and kurtosis of CB distribution as a function 

of 𝛼. (solid line: 𝛽 = 0.2, dashed line: 𝛽 = 0.5, dotted line: 𝛽 = 1.0 and dotdash line: ). 𝛽 = 2.0 
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Figure 3: Upper Panel: estimated relative bias of 𝛼. Lower Panel: estimated relative bias of 

𝛽. 1: (𝛼, 𝛽) = (0.2,0.2), 2: (𝛼, 𝛽) = (0.2,1.5), 3: (𝛼, 𝛽) = (0.5,0.2), 4: (𝛼, 𝛽) =

(0.5,0.5), 5: (𝛼, 𝛽) = (1.0,0.2) 𝑎𝑛𝑑 6: (𝛼, 𝛽) = (1.5,1.5). 
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Figure 4: Upper Panel: estimated relative root mean-squared error of 𝛼. Lower Panel: estimated 

relative root mean-squared error of 𝛽. 1: (𝛼, 𝛽) = (0.2,0.2), 2: (𝛼, 𝛽) = (0.2,1.5), 3: (𝛼, 𝛽) =

(0.5,0.2), 4: (𝛼, 𝛽) = (0.5,0.5), 5: (𝛼, 𝛽) = (1.0,0.2) 𝑎𝑛𝑑 6: (𝛼, 𝛽) = (1.5,1.5). 

 

  

  

Figure 5: Left Upper Panel: IRBSQ of 𝛼. Right Upper Panel: IRBSQ of 𝛽. Left Lower Panel: 

ARRMSE of 𝛼. Right Lower Panel: ARRMSE of 𝛽. solid line: LME and dashed line: MLE. 
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Figure 6: Empirical and fitted CDF for the annual temperature extremes indices. 


