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Abstract
Different cure fraction models have been used in the analysis of lifetime data in pres-

ence of cured patients. This paper considers mixture and nonmixture models based

on discrete Weibull distribution to model recurrent event data in presence of a cure

fraction. The novelty of this study is the use of a discrete lifetime distribution in place

of usual existing continuous lifetime distributions for lifetime data in presence of cured

fraction, censored data, and covariates. In the verification of the fit of the proposed

model it is proposed the use of randomized quantile residuals. An extensive simulation

study is considered to evaluate the properties of the estimates of the parameters related

to the proposed model. As an illustration of the proposed methodology, it is consid-

ered an application considering a medical dataset related to lifetimes in a retrospective

cohort study conducted by Puchner et al. (2017) that consists of 147 consecutive cases

with surgical treatment of a sarcoma of the pelvis between the years of 1980 and 2012.
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1 INTRODUCTION

In many medical studies, an issue of great interest in medical research is the estimation of the fraction of patients in the studied
population who never experience the event of interest. These patients are not at risk with respect to the event of interest and
are considered immune, cured, nonsusceptible, or extremely long-term survivors. Standard survival analysis techniques, as for
example, the Cox proportional hazards (Cox, 1972) model, provide no direct estimation for the cure fraction that is a motivation
for the use of mixture and nonmixture cure fraction models.

According to Vahidpour (2016), in the literature it is presented different models to be fitted by data in presence of cure fraction
with great emphasis on the mixture cure fraction models, also known as standard cure fraction models (see, e.g., De Angelis,
Capocaccia, Hakulinen, Soderman, & Verdecchia, 1999; Lambert, Thompson, Weston, & Dickman, 2006), which have been
widely used for modeling survival data in presence of cure fraction and the nonmixture cure fraction models that are not very
popular (see Achcar, Coelho-Barros, & Mazucheli, 2012; Tsodikov, Ibrahim, & Yakovlev, 2003; Vahidpour, 2016). Different
approaches have been presented in the literature to model cure fraction for univariate lifetime data: (see, e.g., Achcar et al., 2012;
Cancho & Bolfarine, 2001; De Angelis et al., 1999; Farewell, 1982; Lambert et al., 2006; Lu, 2010; Othus et al., 2012; Price &
Manatunga, 2001; Yin & Ibrahim, 2005; Yu, Tiwari, Cronin, & Feuer, 2004, among many other studies).

Let us denote by 𝑇 a positive random variable related to the the time until the event. Following Maller and Zhou (1996), the
standard fraction model (or mixture cure fraction model) assumes that the probability of the time-to-event to be greater than a
specified time 𝑡 (the survival function) is given by
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𝑆(𝑡) = 𝜌 + (1 − 𝜌)𝑆0(𝑡), (1)

where 𝜌 ∈ (0, 1) is the mixing parameter that represents the proportion of “long-term survivors,” “nonsusceptible,” or “cured
patients,” and 𝑆0(𝑡) denotes a proper survival function for the noncured or susceptible group in the population. Observe that
if 𝑡 → ∞, then 𝑆(𝑡) → 𝜌, that is, the survival function has an asymptote at the cure fraction 𝜌. The probability density and the
hazard functions corresponding to (1) are given, respectively, by

𝑓 (𝑡) = (1 − 𝜌)𝑓0(𝑡) and ℎ(𝑡) =
(1 − 𝜌)𝑓0(𝑡)

𝜌 + (1 − 𝜌)𝑆0(𝑡)
. (2)

As an alternative for the mixture cure fraction model, a nonmixture model has been proposed in the literature that defines an
asymptote for the cumulative hazard and thus for the cure fraction (see Tsodikov et al., 2003). In this case, the survival function
for the nonmixture cure fraction model is given by

𝑆(𝑡) = 𝜌𝐹0(𝑡) = exp{ln(𝜌)𝐹0(𝑡)}, (3)

where 𝜌 ∈ (0, 1) is the probability of cured patients and 𝐹0(𝑡) = 1 − 𝑆0(𝑡) denotes a proper distribution function for the non-
cured or susceptible group in the population. The probability density and the hazard functions corresponding to (3) are given,
respectively, by

𝑓 (𝑡) = − ln(𝜌)𝑓0(𝑡) exp{ln(𝜌)𝐹0(𝑡)} and ℎ(𝑡) = − ln(𝜌)𝑓0(𝑡). (4)

The main goal of this paper is to introduce discrete Weibull cure fraction models to investigate long-term lifetimes and risk
factors with a special application related to the lifetimes of patients receiving a treatment for pelvic sarcomas. The main reason
for the use of the discrete Weibull distribution, is that similarly to the continuous case of the Weibull probability distribution,
possibly the most used lifetime distribution in medical or engineering applications due to the great flexibility of fit, the discrete
case of the Weibull distribution is also a good option for the modeling of lifetime discrete data. Besides the great flexibility
of fit, this model only has two parameters that implies in great simplicity to get the inferences of interest. It is important to
point out that other flexible parametric distributions like the Burr XII or the Lindley also could be assumed following the same
approach introduced in this paper. According to Sugarbaker (2001), an important feature characteristic of the natural history of
retroperitoneal and pelvic sarcomas is how it differs significantly from the more common abdominal and pelvic adenocarcinomas
and from visceral sarcoma. These differences are important when planning a treatment since the treatment of pelvic sarcomas
are surgically difficult due to the anatomic proximity of the pelvis to many neurovascular structures and the urinary and intestinal
tracts, with poor oncological outcomes and high complication rates.

In this way, it is considered a retrospective cohort study conducted by Puchner et al. (2017) that consists of 147 consecutive
cases with surgical treatment of a sarcoma of the pelvis between the years of 1980 and 2012. The records included 68 males
(46%) and 79 females (54%) with an average age of 38 ± 20 years at time of surgery. The diagnosis was based on conclusive
clinical and imaging findings and it was always confirmed by biopsy and histological analysis. Some prognostic and oncological
factors were also reported associated to the lifetimes of the patients: patient gender, tumor grade, radiotherapy, chemotherapy,
among many others.

The paper is organized as follows: in Section 2 it is presented the proposed discrete Weibull models using the standard mixture
and the nonmixture cure fraction models. The inference methods and residuals procedures are introduced in Section 3. Section 4
presents a simulation study carried out to evaluate the model properties considering a hypothetic cure fraction. Finally, Section 5
presents the analysis of pelvic sarcoma under the proposed methodology and Section 6 closes the paper with some concluding
remarks and directions for future research.

2 DISCRETE WEIBULL CURE FRACTION MODELS

In this section, we assume that the distribution of the lifetimes for the susceptible populations follows a discrete Weibull (DW)
distribution introduced by Nakagawa and Osaki (1975), which can be considered as a discrete analog of the continuous Weibull
distribution. The probability mass function (p.m.f.) of a DW distribution is defined by

Pr(𝑇 = 𝑡 ∣ 𝜙, 𝛽) = 𝜙𝑡𝛽 − 𝜙(𝑡+1)𝛽 , 𝑡 ∈ ℕ0 = {0, 1, 2,…} (5)
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and its corresponding survival function is given by

𝑆(𝑡 ∣ 𝜙, 𝛽) = Pr(𝑇 > 𝑡 ∣ 𝜙, 𝛽) = 𝜙(𝑡+1)𝛽 , (6)

where 𝛽 > 0 and 0 < 𝜙 < 1. Note that, when 𝛽 = 1, the UW distribution reduces to the geometric distribution and when 𝛽 = 2, it
reduces to the Rayleigh distribution introduced by Roy (2004). This model has been applied to many areas, including competing
risks, extreme values, failure times, regional analyses of precipitation, and reliability (see, e.g., Almalki & Nadarajah, 2014;
Brunello & Nakano, 2015; Englehardt & Li, 2011; Khan, Khalique, & Abouammoh, 1989; Kulasekera, 1994; Murthy, Xie, &
Jiang, 2004; Roy, 2002).

From Klakattawi et al. (2018), the 𝜏th (0 < 𝜏 < 1) quantile of DW distribution is given by

𝑀 =
⎢⎢⎢⎣
(
log(1 − 𝜏)
log(𝜙)

) 1
𝛽

− 1
⎥⎥⎥⎦ , 𝜏 ≥ 1 − 𝜙, (7)

where ⌊𝑥⌋ denotes the integer less than or equal to 𝑥.

Remark 1. If the random variable 𝑋 follows a Weibull distribution with scale 𝜇 and shape 𝛽 parameters, denoted by W(𝛽, 𝜇).
Thus for 𝜙 = e

− 1
𝜇 we have that

𝑇 = ⌊𝑋⌋ . (8)

From (8) we can easily generate random samples from a DW(𝛽, 𝜙). More specifically, we first generate a random sample 𝑋 from
a W(𝛽, 𝜇) distribution, and then by considering 𝑇 = ⌊𝑋⌋, we obtain a generated sample from DW(𝛽, 𝜙).

Using the proposed methodology, the mixture and nonmixture cure fraction model for the lifetime 𝑇 assuming the DW
distribution are given, respectively, by

𝑆(𝑡 ∣ 𝜙, 𝛽, 𝜌) = Pr(𝑇 > 𝑡 ∣ 𝜙, 𝛽, 𝜌) = 𝜌 + (1 − 𝜌)𝜙(𝑡+1)𝛽 , (9)

and

𝑆(𝑡 ∣ 𝜙, 𝛽, 𝜌) = Pr(𝑇 > 𝑡 ∣ 𝜙, 𝛽, 𝜌) = exp
{
ln(𝜌)

[
1 − 𝜙(𝑡+1)𝛽

]}
, (10)

where 𝜌 ∈ (0, 1) is the cure fraction parameter.

Remark 2. Since the DW model has no closed form for the expected value and variance, the subsequently mixture and nonmixture
cure fraction models also have no closed form for their expected values and variances. However, the expected values and the
variances could be obtained using numerical methods directly from the definition of the 𝑟-th moment given by

𝔼 (𝑇 𝑟) =
∞∑
𝑘=0

𝑘𝑟
{
𝜙
log

[
1+

(
𝑘

𝜃

)𝛼]
− 𝜙

log
[
1+

(
𝑘+1
𝜃

)𝛼]}
,

where, in particular, for 𝑟 = 1, we have 𝔼(𝑇 ) =
∑∞

𝑘=1𝜙
log[1+( 𝑘

𝜃
)𝛼] and for 𝑟 = 2 we have 𝔼(𝑇 2) =

∑∞
𝑘=1(2𝑘 − 1)𝜙log[1+( 𝑘

𝜃
)𝛼 ].

3 INFERENCE AND RESIDUALS

3.1 Maximum likelihood method
Let us consider the situation when the lifetime, 𝑇𝑖, is not completely observed and may be subject to right censoring. Let 𝐶𝑖 be
the censoring time for the 𝑖th individual. From a sample of size 𝑛 , we observe 𝑇𝑖 = min{𝑇𝑖, 𝐶𝑖} and 𝛿𝑖 = 𝐼(𝑇𝑖 < 𝐶𝑖), where
𝛿𝑖 = 1 if 𝑇𝑖 is an observed lifetime and 𝛿𝑖 = 0 if it is right censored lifetime. In this case, the log-likelihood function considering
the DW distribution with p.m.f. defined in (5), can be written as

𝓁(𝛽, 𝜙 ∣ 𝒕, 𝜹) =
𝑛∑
𝑖=1

𝛿𝑖 log
[
𝜙𝑡𝛽 − 𝜙(𝑡+1)𝛽

]
+

𝑛∑
𝑖=1

(1 − 𝛿𝑖) log
[
𝜙(𝑡+1)𝛽

]
, (11)

where 𝒕 = (𝑡1,… , 𝑡𝑛)⊤ and 𝜹 = (𝛿1,… , 𝛿𝑛)⊤.
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Assuming the DW mixture model the log-likelihood function can be expressed as

𝓁(𝜽 ∣ 𝒕, 𝜹) = 𝑟 ln(1 − 𝜌) +
𝑛∑
𝑖=1

𝛿𝑖 ln
[
𝜙𝑡

𝛽
𝑖 − 𝜙(𝑡𝑖+1)𝛽

]
+

𝑛∑
𝑖=1

(1 − 𝛿𝑖) ln
[
𝜌 + (1 − 𝜌)𝜙(𝑡𝑖+1)𝛽

]
, (12)

where 𝜽 = (𝛽, 𝜙, 𝜌)⊤ and 𝑟 =
𝑛∑
𝑖=1

𝛿𝑖 is the number of uncensored observations.

Additionally, considering the discrete Weibull nonmixture model, the likelihood can be written as

𝓁(𝜽 ∣ 𝒕, 𝜹) = 𝑟 ln (− ln 𝜌) +
𝑛∑
𝑖=1

𝛿𝑖 ln
[
𝜙𝑡

𝛽
𝑖 − 𝜙(𝑡𝑖+1)𝛽

]
+ (ln 𝜌)

𝑛∑
𝑖=1

1 − 𝜙(𝑡𝑖+1)𝛽 . (13)

The maximum likelihood estimates (MLEs) �̂� for the unknown parameters in the vector parameter 𝜽 are obtained by maximiz-
ing the log-likelihood functions defined in Equations (11), (12), and (13) using standard optimization methods, such as Newton-
Raphson and quasi-Newton. In this study, the MLEs were obtained by the quasi-Newton method available in the SAS/NLMIXED
procedure (SAS, 2010). Under suitable regularity conditions (see, Lehmann & Casella, 1998, pp. 461–463), the asymptotic dis-
tribution of the maximum likelihood estimator �̂� is a multivariate Normal distribution with mean 𝜽 and covariance matrix 𝚺(�̂�),
which can be consistently estimated by the inverse of the observed Fisher information matrix given by

�̂�
(
�̂�
)
=
[
−𝜕 𝓁(𝜽 ∣ 𝒕, 𝜹)

𝜕𝜽 𝜕𝜽⊤

]−1
(14)

evaluated at 𝜽 = �̂�. The required second derivatives are computed numerically using the SAS/NLMIXED procedure.
We further propose to relate the parameters𝜙 and 𝜌 of the mixture and non-mixture models to a vector of explanatory variables

𝒙𝑖 and 𝒛𝑖, respectively. Thus, we assume the following link functions

log
(
− log(𝜙𝑖)

)
= 𝒙⊤𝑖 𝜶 and log

(
𝜌𝑖

1 − 𝜌𝑖

)
= 𝒛⊤𝑖 𝜹, (15)

where 𝜶 and 𝜹 denote the vectors of unknown parameters. It is noteworthy, that the log-log link function in 𝜙 is motivated by the
analytical formula for the quantile function (7), which facilitates the interpretation of the coefficients. According to Klakattawi
et al. (2018) the regression parameters 𝜶 can be interpreted in relation to the logarithm of the median.

To discriminate the proposed models we can consider the Akaike Information Criterion (AIC) (Akaike, 1974) that is given
by AIC = −2𝓁(�̂�) + 2 𝑝, where 𝑝 is the number of model parameters. Among all considered models those one with the smallest
value is commonly take as the favored model to describe the data (Rohde, 2014).

3.2 Randomized quantile residuals
Given that the response is discrete, in the evaluation and study of departures from the model assumptions we propose the use of
the randomized quantile residuals introduced by Dunn and Smyth (1996), which are defined as follows,

�̂�𝑖 = Φ−1(𝑢𝑖), 𝑖 = 1,… , 𝑛, (16)

where Φ(⋅) is the standard normal distribution function and 𝑢𝑖 is a random value from the uniform distribution on the interval

𝑢𝑖 =

⎧⎪⎪⎨⎪⎪⎩

[
𝐹 (𝑡𝑖 − 1 ∣ �̂�), 𝐹 (𝑡𝑖 ∣ �̂�)

]
, for 𝛿𝑖 = 1

[
𝐹 (𝑡𝑖 ∣ �̂�), 1

]
, for 𝛿𝑖 = 0,

(17)

where 𝐹 (𝑡𝑖 ∣ �̂�) is the cumulative distribution function of mixture and nonmixture DW models. Apart from the variability due to
the estimates of the parameters these residuals have standard normal distribution if the proposed model is is correctly specified
(Dunn & Smyth, 1996).
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Hence, to check if the model assumption is adequate we can examine the half-normal plots with simulated envelope proposed
by Atkinson (1981). The simulated envelope can be construct as follows

(i) fit the model and generate sample set of 𝑛 independent observations using the estimated parameters of the fitted model;

(ii) fit the model from the generated sample, calculate the absolute values of the residuals and arrange them in order;

(iii) repeat steps (i) and (ii) 𝐵 number of times;

(iv) consider the 𝑛 sets of the 𝐵 ordered statistics of the residuals, then for each set calculate the quantile 𝛾∕2, the median and
the quantile 1 − 𝛾∕2;

(v) plot these values and the ordered residuals of the original sample set versus the expected order statistics of a half-normal
distribution, which is approximated as

Φ−1
(
𝑖 + 𝑛 − 0.125
2 𝑛 + 0.5

)
.

According to Atkinson (1981) if the model was correctly specified then no more than 𝛾 × 100% of the observations are
expected to appear outside the envelope bands. Additionally, if a large proportion of the observations lies outside the envelope,
thus one have evidence against the adequacy of the fitted model.

4 SIMULATION STUDY

In this section, we present results of a simulation study to assess the performance of the maximum likelihood estimators of the
parameters of DW mixture and non-mixture models considering different sample sizes, different fixed parameter values and
different fixed proportion of cure fractions. In order to simulate a random sample from DW distribution containing observed
times, censored times, and cure fraction we consider the following algorithm:

1. Fix the parameter values, that is, 𝛽 and 𝜙 of the DW distribution as well as the value of cure fraction 𝜌 and the proportion of
censored observations 𝜆;

2. Find the value of 𝜏 to achieve the desired proportion of censored times 𝜆. To that end we need to find the root of the following
equation:

1
𝜏 ∫

𝜏

0
𝑆𝑦(𝑐) d𝑡 d𝑐 − 𝜆 = 0, (18)

where 𝑆𝑦 denotes the survival function of the observed times;

Remark 3. In this step the package LindleyR (Mazucheli, Fernandes, & de Oliveira, 2016) is used to solve (18);

3. Generate𝑍𝑖 ∼ Bernoulli(𝜌) for the cure fraction, 𝑌𝑖 ∼ DW(𝛽, 𝜙) for the observed times and𝐶𝑖 ∼ Uniform(𝜏) for the censored
times;

4. If 𝑦𝑖 > 𝑐𝑖 or 𝑧𝑖 = 1 set 𝛿𝑖 = 0, otherwise set 𝛿𝑖 = 1, where 𝛿𝑖 is the censoring indicator.

In all scenarios, we considered random samples of size 𝑛 = 100, 300, and 500. For each sample size we performed
10,000 simulations and calculated the bias and the root of mean squared error. We fixed 𝛽 = 0.9 and considering that 𝜙𝑖 =
exp(− exp(𝛼0 + 𝛼1 𝑥𝑖)), the true values for the parameters were fixed as 𝛼0 = −2.0 and 𝛼1 = −1.0. The covariate 𝑥𝑖 is simulated
from Bernoulli(0.5) distribution and their values were remained constant during the simulations. The proportion of censored
times was fixed at 𝜆 = 0.1. Tables 1 and 2 present the results of the Monte Carlo simulations.

In the first experiment, it was considered that the cure fraction parameter, 𝜌, was not affected by the covariate, taking the
following values: 𝜌 = 0.1, 0.2, and 0.3. From the results presented in Table 1 it is observed that:

(i) The mixture model has lower biases than the nonmixture model, mainly for the 𝛼1, 𝜌, and 𝛽 parameters;

(ii) For both models and scenarios the parameter 𝛼0 presented moderate bias;

(iii) As expected, the RMSE for both models decrease as the sample size increase, conforming the consistency of the maximum
likelihood estimates.
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T A B L E 1 Estimated bias and root mean squared errors for the parameters of the DW mixture and nonmixture models — Scenario I

Bias RMSE
Model 𝝆 𝒏 𝜶𝟎 𝜶𝟏 𝝆 𝜷 𝜶𝟎 𝜶𝟏 𝝆 𝜷

1 0.1 100 0.167 0.083 −0.051 0.018 0.091 0.058 0.122 0.007

300 0.186 0.096 −0.010 0.006 0.054 0.027 0.038 0.002

500 0.192 0.094 −0.009 0.005 0.048 0.019 0.021 0.001

0.2 100 0.165 0.078 −0.024 0.021 0.099 0.064 0.067 0.008

300 0.183 0.097 −0.003 0.007 0.055 0.028 0.021 0.002

500 0.191 0.094 −0.005 0.005 0.049 0.020 0.012 0.001

0.3 100 0.159 0.074 −0.004 0.024 0.108 0.073 0.049 0.009

300 0.179 0.095 −0.001 0.009 0.058 0.030 0.015 0.003

500 0.191 0.093 −0.002 0.005 0.051 0.022 0.010 0.002

2 0.1 100 −0.900 −0.028 0.054 0.167 0.894 0.069 0.111 0.036

300 −0.870 −0.020 0.090 0.156 0.784 0.023 0.042 0.027

500 −0.866 −0.023 0.092 0.155 0.766 0.014 0.027 0.025

0.2 100 −0.628 −0.025 0.040 0.149 0.484 0.074 0.062 0.031

300 −0.605 −0.007 0.056 0.135 0.394 0.024 0.023 0.021

500 −0.597 −0.011 0.055 0.133 0.373 0.015 0.014 0.019

0.3 100 −0.451 −0.013 0.038 0.131 0.302 0.082 0.048 0.027

300 −0.429 0.007 0.039 0.115 0.216 0.026 0.016 0.016

500 −0.418 0.005 0.038 0.111 0.193 0.016 0.011 0.014

1: mixture model; 2: nonmixture model.

The second Monte Carlo experiment was carried out considering that the cure fraction parameter is affected by the covariate
𝑥𝑖 through the following regression structure:

𝜌(𝑥𝑖) =
exp

(
𝛿0 + 𝛿1 𝑥𝑖

)
1 + exp

(
𝛿0 + 𝛿1 𝑥𝑖

) ,
where the true values of the parameters were taken as 𝛿0 ≈ (−2.19,−1.38,−0.84) and 𝛿1 = −1.0, so that the cure fraction for the
two levels of the covariate are 𝜌(𝑥𝑖 = 0) = (0.1, 0.2, 0.3) and 𝜌(𝑥𝑖 = 1) ≈ (0.0392, 0.0842, 0.1361). Some points are very clear
from the results presented in Table 2.

(i) The mixture model has lower biases than the nonmixture model, mainly for 𝛼1, 𝛿0, 𝛿1, and 𝛽;

(ii) The parameter 𝛼0 presented a moderate biased for both models. Specially, it is positively biased for the mixture model,
whereas it is negatively biased for the nonmixture model;

(iii) As expected, the RMSE for both models decrease as the sample size increase, conforming the showing consistency of the
maximum likelihood estimates;

(iv) The parameter 𝛼0 in nonmixture model presented a moderate RMSE.

5 STATISTICAL ANALYSIS OF THE PELVIC SARCOMA (PS) DATASET

For all patients with pelvic sarcoma in the study introduced by Puchner et al. (2017), three lifetimes lifetime were investigated:
the overall survival to death, the time to infection and the time to metastasis. In addition, the prognostic factors of age, gender,
tumor grade, radiotherapy, chemotherapy, and tumor volume were also recorded. One of the main goals of this study, was to
check the influence of potential prognostic factors on the three responses. To that end, the mixture and nonmixture discrete
Weibull models were assumed in the data analysis.



DE OLIVEIRA ET AL. 7

T A B L E 2 Estimated bias and root mean squared errors for the parameters of the DW mixture and nonmixture models — Scenario II

Bias RMSE
Model 𝝆(𝒙𝒊 = 𝟎) 𝒏 𝜶𝟎 𝜶𝟏 𝜹𝟎 𝜹𝟏 𝜷 𝜶𝟎 𝜶𝟏 𝜹𝟎 𝜹𝟏 𝜷

1 0.1 100 0.167 0.079 −0.161 −1.329 0.018 0.090 0.056 1.246 1.208 0.007

300 0.187 0.096 −0.026 −0.080 0.006 0.054 0.026 0.080 0.700 0.002

500 0.192 0.094 −0.026 −0.022 0.004 0.048 0.019 0.045 0.177 0.001

0.2 100 0.168 0.078 −0.034 −0.216 0.019 0.098 0.061 0.137 2.345 0.008

300 0.184 0.097 −0.010 −0.018 0.007 0.055 0.027 0.043 0.137 0.002

500 0.191 0.093 −0.011 −0.002 0.005 0.049 0.019 0.025 0.083 0.001

0.3 100 0.165 0.075 −0.001 −0.083 0.022 0.106 0.067 0.104 0.381 0.008

300 0.182 0.096 −0.006 −0.012 0.008 0.057 0.029 0.031 0.091 0.002

500 0.192 0.092 −0.008 −0.002 0.005 0.051 0.020 0.020 0.056 0.001

2 0.1 100 −0.899 −0.621 −0.399 −2.509 0.160 0.938 1.815 0.090 0.876 0.034

300 −0.866 −0.340 0.106 −0.121 0.156 0.780 0.168 0.081 0.746 0.027

500 −0.864 −0.331 0.105 −0.059 0.156 0.763 0.137 0.050 0.180 0.026

0.2 100 −0.648 −0.361 0.052 −1.925 0.158 0.512 0.345 0.124 0.217 0.034

300 −0.628 −0.299 0.067 −0.017 0.147 0.424 0.123 0.043 0.127 0.024

500 −0.621 −0.300 0.066 −0.003 0.145 0.403 0.110 0.026 0.077 0.023

0.3 100 −0.489 −0.299 0.055 −0.071 0.148 0.338 0.185 0.099 0.271 0.031

300 −0.471 −0.260 0.045 −0.002 0.133 0.252 0.098 0.031 0.084 0.020

500 −0.460 −0.262 0.043 0.005 0.130 0.229 0.088 0.020 0.051 0.018

1: mixture model; 2: nonmixture model.

T A B L E 3 Inference results for the three lifetimes

Survival Time Infection Time Metastasis Time
Model Parameter MLE 95% C.I. AIC MLE 95% C.I. AIC MLE 95% C.I. AIC
Weibull 𝜇 19.6126 (8.5066, 30.7186) 761.5373 26.0097 (7.8812, 44.1382) 311.0863 37.1204 (8.8439, 65.3968) 423.8983

𝛽 0.6181 (0.4921, 0.7442) 0.4562 (0.3025, 0.6098) 0.6229 (0.4521, 0.7936)

Mixture
Weibull

𝜇 23.9595 (6.7375, 41.1815) 751.9783 7.7367 (1.4697, 14.0038) 309.0108 31.7240 (1.0969, 62.3511) 411.5414

𝛽 0.9199 (0.7088, 1.1310) 0.6420 (0.4156, 0.8683) 1.0576 (0.7822, 1.3330)

𝜌 0.3663 (0.2593, 0.4734) 0.7256 (0.6009, 0.8503) 0.6261 (0.5156, 0.7367)

Nonmixture
Weibull

𝜇 41.3519 (10.2851, 72.4186) 754.2051 9.1000 (1.3374, 16.8625) 309.0300 43.4083 (-0.4776, 87.2941) 411.3725

𝛽 0.9714 (0.7394, 1.2035) 0.6609 (0.4277, 0.8941) 1.1071 (0.8196, 1.3946)

𝜌 0.3632 (0.2455, 0.4809) 0.7255 (0.5993, 0.8517) 0.6246 (0.5133, 0.7359)

5.1 Statistical analysis not considering the presence of covariates
We firstly fitted models for the PS data based on the mixture and nonmixture discrete Weibull without considering the presence
of covariates. The corresponding inference results are given in Table 3. From these results, it is observed that all models, on
computational aspects, did not show instability and the estimation method converged successful. As expected, the smallest AIC
values were obtained assuming the mixture and nonmixture models.

Moreover, the estimated proportion of cure fraction for the survival times, that is, the proportions of people in population who
will not die due to sarcoma pelvic, are given by 36.63 and 36.32% considering the mixture and nonmixture models, respectively,
while from the Kaplan–Meier estimate it is approximately 37.40%. Regarding the time to infection it was verified that the
estimated proportions of cure fraction are given by 72.56 and 72.55% for the mixture and nonmixture models, respectively,
whereas from the Kaplan–Meier estimate the cure fraction is 72.80%. Finally, for the time to metastasis the estimated proportions
of cure fraction are given by 62.61 and 62.46% assuming the mixture and nonmixture models, respectively, and it is 62.20%
from the Kaplan–Meier estimate.

Figure 1 displays the plots of theoretical estimated survival functions based on the maximum likelihood estimates along
with the empirical survival functions in presence of censored data using the Kaplan–Meier method. It is observed that the DW
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F I G U R E 1 Kaplan–Meier curves and the estimated survival functions for the three times

mixture and nonmixture models have better fit than the DW distribution with no cure rate. We can conclude that the mixture
and nonmixture models captured the cure rate with great accuracy.

Finally, it is compared in Figure 2 the empirical estimates based on the Kaplan–Meier versus the corresponding predicted
values obtained from the parametric models. Clearly, we can observe from these plots that the predicted values obtained from
the mixture and nonmixture models are closer to the empirical values than those obtained from the standard discrete Weibull.
Nevertheless, for the time to infection it seems that no one of the models have a satisfactory fit.

5.2 Statistical analysis in the presence of covariates
In what follows let us consider the following covariates associated to each patient:

• age40𝑖: age of the patients at start of follow-up, classified as less than 40 years (age40𝑖 = 0) versus greater or equal to 40 years
(age40𝑖 = 1);

• sex𝑖: patient gender, classified as male (sex𝑖 = 0) versus female (sex𝑖 = 0);

• chemo𝑖: whether the patient received chemotherapy (chemo𝑖 = 1) or not (chemo𝑖 = 0);

• radio𝑖: whether the patient received radiotherapy (radio𝑖 = 1) or not (radio𝑖 = 0);

• grade𝑖: tumor grade of the patient classified as G3 (grade𝑖 = 1) versus G2 (grade𝑖 = 0);

• log2volume𝑖: tumor volume (log2-transformed).

In our analysis considering regression models, it was assumed that the covariates affect the probability of being cured and the
parameter 𝜙, considering the following regression structures:

log
(

𝜌𝑖
1 − 𝜌𝑖

)
= 𝛿0 + 𝛿1 age40𝑖 + 𝛿2 sex𝑖 + 𝛿3 chemo𝑖 + 𝛿4 radio𝑖 + 𝛿5 grade𝑖 + 𝛿6 log2volume𝑖 (19)

and

log
(
− log(𝜙𝑖)

)
= 𝛼0 + 𝛼1 age40𝑖 + 𝛼2 sex𝑖 + 𝛼3 chemo𝑖 + 𝛼4 radio𝑖 + 𝛼5 grade𝑖 + 𝛼6 log2volume𝑖 (20)

for 𝑖 = 1,… , 147.
The inference results for the overall survival to death, time to infection, and time to metastasis are reported in Tables 4, 5, and

6, respectively.
From the obtained results of Table 4, it was observed that for both models (mixture and nonmixture) the covariates grade (𝛿5)

and tumor volume (𝛿6) affect the overall survival to death since the zero value is not included in the 95% confidence intervals. The
significance of these covariates indicate that the probability of being “cured,” that is, not dying due to sarcoma pelvic, depends
on person's tumor grade and volume. Patients who have tumor grade G3 seem to have lower chance of not dying compared to
patients with tumor grade G2. In addition, we can observe that as the tumor volume increases the odds of not dying due to pelvic
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F I G U R E 2 Plots of the Kaplan–Meier estimates for the survival function versus the respective predicted values obtained from the parametric
models for the three lifetimes. (Upper Panel: Survival time. Middle Panel: Infection time. Lower Panel: Metastasis time.)

sarcoma decreases, since the parameter 𝛿6 associated to the tumor volume has a negative sign. A difference exist regarding the
significance of the covariate age40 (𝛿1) and radio (𝛿4), because they are statistically not significants in the mixture model. For
the DW mixture model only the covariate tumor volume (𝛼6) affects the median of the survival time, whereas in the nonmixture
model the covariates age40 (𝛼1) and radio (𝛼4) are also significant at the 5% significance level. From the obtained results of
Table 4, it is observed that the inferences for the regression parameters 𝛿0, 𝛿1,… , 𝛿6 are similar since the regression parameters
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T A B L E 4 Inference results for the discrete Weibull cure rate regression models — Survival time

Mixture Nonmixture
Parameter MLE SE 95% C.I. MLE SE 95% C.I.
𝛿0 6.2878 2.1468 (2.0431, 10.5325) 7.0469 1.8754 (3.3389, 10.7549)

𝛿1 −1.6036 0.8449 (−3.2741, 0.0669) −1.8573 0.7275 (−3.2956, −0.4189)

𝛿2 −0.3822 0.4918 (−1.3546, 0.5901) −0.2539 0.5196 (−1.2813, 0.7734)

𝛿3 0.1498 0.6348 (−1.1054, 1.4050) −0.0420 0.6864 (−1.3991, 1.3151)

𝛿4 −1.4408 0.7506 (−2.9248, 0.0433) −1.5720 0.6847 (−2.9258, −0.2181)

𝛿5 −2.2784 0.7974 (−3.8551, −0.7018) −2.4059 0.7795 (−3.9471, −0.8648)

𝛿6 −0.4533 0.1567 (−0.7632, −0.1434) −0.5113 0.1483 (−0.8046, −0.2181)

𝛼0 −0.4324 2.1326 (−4.6489, 3.7841) 1.3765 1.3332 (−1.2594, 4.0124)

𝛼1 −0.7533 0.7378 (−2.2121, 0.7054) −1.4037 0.5125 (−2.4171, −0.3904)

𝛼2 −0.5068 0.3380 (−1.1750, 0.1614) −0.5165 0.3768 (−1.2615, 0.2286)

𝛼3 −0.6700 0.4044 (−1.4695, 0.1296) −0.9122 0.5152 (−1.9309, 0.1065)

𝛼4 −0.7493 0.6431 (−2.0208, 0.5222) −1.2694 0.4968 (−2.2516, −0.2872)

𝛼5 0.2029 0.6441 (−1.0705, 1.4764) −0.4409 0.5908 (−1.6090, 0.7272)

𝛼6 −0.2206 0.1108 (−0.4397, −0.0015) −0.3697 0.1065 (−0.5802, −0.1591)

𝛽 1.1115 0.1793 (0.7569, 1.4661) 1.1596 0.1375 (0.8877, 1.4315)

MLE, maximum likelihood estimates; SE, standard error; 95% C.I., 95% confidence interval.

T A B L E 5 Inference results for the discrete Weibull cure rate regression models — Time to infection

Mixture Nonmixture
Parameter MLE SE 95% C.I. MLE SE 95% C.I.
𝛿0 −16.4294 11.3838 (−38.9385, 6.0798) −9.5600 7.3180 (−23.9030, 4.7830)

𝛿1 −3.6810 1.9659 (−7.5682, 0.2062) −3.2156 1.6364 (−6.4229, −0.0082)

𝛿2 8.0530 4.6309 (−1.1036, 17.2096) 4.7289 2.6811 (−0.5260, 9.9837)

𝛿3 7.6546 4.7980 (−1.8324, 17.1417) 4.7702 2.9249 (−0.9625, 10.5030)

𝛿4 −3.9429 2.3855 (−8.6598, 0.7740) −3.1499 1.7926 (−6.6632, 0.3635)

𝛿5 −3.9574 2.7146 (−9.3250, 1.4102) −2.1437 1.8444 (−5.7586, 1.4712)

𝛿6 1.1875 0.7627 (−0.3206, 2.6956) 0.7942 0.5411 (−0.2664, 1.8548)

𝛼0 −8.5747 1.9547 (−12.4398, -4.7095) −11.9181 3.0884 (−17.9713, −5.8650)

𝛼1 −0.9091 0.6660 (−2.2261, 0.4079) −2.2399 1.0368 (−4.2719, −0.2079)

𝛼2 1.9000 0.8354 (0.2483, 3.5518) 3.2018 0.9450 (1.3496, 5.0540)

𝛼3 2.3371 0.8708 (0.6154, 4.0589) 3.6894 1.0830 (1.5668, 5.8120)

𝛼4 −1.4132 0.7004 (−2.7981, −0.0284) −2.5335 1.0909 (−4.6717, −0.3954)

𝛼5 −0.7874 0.7070 (−2.1855, 0.6106) −1.2127 1.0060 (−3.1844, 0.7590)

𝛼6 0.6456 0.1777 (0.2942, 0.9969) 0.9284 0.2783 (0.3830, 1.4738)

𝛽 0.3737 0.0895 (0.1968, 0.5507) 0.4387 0.1170 (0.2095, 0.6680)

MLE, maximum likelihood estimates; SE, standard error; 95% C.I., 95% confidence interval.

are related in both cure models to the same cure parameter 𝜌. In other way, the obtained inferences for the regression parameters
𝛼0, 𝛼1,… , 𝛼6 related to the parameter 𝜙 are in general different since they are associated to different scales given by the survival
functions (9) and (10).

Figure 3 presents the half-normal with simulated envelope considering the randomized quantile residuals. It is observed, for
both models, that all points lie inside the envelopes, suggesting that there is no serious violation of the model assumptions.
Additionally, it is noteworthy that the nonmixture model fits the data better than the mixture, since the observed residuals are
closer to the median line.

In respect to the time to infection the results from Table 5 showed that all covariates do not affect the probability of being
cured assuming the mixture model, since the 95% confidence intervals include the zero value. On the other hand, the covariate
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T A B L E 6 Inference results for the discrete Weibull cure rate regression models — Time to metastasis

Parameter Mixture Nonmixture
MLE SE 95% C.I. MLE SE 95% C.I.

𝛿0 7.1233 1.9217 (3.3570, 10.8897) 6.9469 1.8971 (3.2288, 10.6651)

𝛿1 −0.3116 0.6474 (−1.5805, 0.9573) −0.2062 0.6569 (−1.4938, 1.0813)

𝛿2 −0.6215 0.5210 (−1.6425, 0.3996) −0.6769 0.5173 (−1.6908, 0.3370)

𝛿3 −1.8591 0.7426 (−3.3146, −0.4036) −1.8487 0.7351 (−3.2894, −0.4079)

𝛿4 0.3352 0.6439 (−0.9269, 1.5973) 0.4549 0.6303 (−0.7805, 1.6904)

𝛿5 −1.1753 0.9068 (−2.9526, 0.6021) −1.1484 0.8935 (−2.8996, 0.6028)

𝛿6 −0.4700 0.1669 (−0.7971, −0.1429) −0.4570 0.1645 (−0.7795, −0.1345)

𝛼0 −4.8403 1.5214 (−7.8222, −1.8584) −4.2341 1.7083 (−7.5823, −0.8858)

𝛼1 −0.2126 0.6624 (−1.5109, 1.0858) −0.0527 0.7592 (−1.5407, 1.4353)

𝛼2 −0.3770 0.4503 (−1.2596, 0.5057) −0.6333 0.5045 (−1.6221, 0.3554)

𝛼3 −2.5830 0.6866 (−3.9287, −1.2373) −2.9090 0.7692 (−4.4166, −1.4014)

𝛼4 0.9750 0.5980 (−0.1970, 2.1471) 1.2403 0.6482 (−0.0301, 2.5108)

𝛼5 3.6399 0.9562 (1.7659, 5.5140) 3.6976 1.0326 (1.6736, 5.7215)

𝛼6 −0.1645 0.1219 (−0.4035, 0.0745) −0.2751 0.1368 (−0.5433, −0.0069)

𝛽 1.7503 0.2417 (1.2766, 2.2239) 1.8718 0.2582 (1.3658, 2.3778)

MLE, maximum likelihood estimates; SE, standard error; 95% C.I., 95% confidence interval.

F I G U R E 3 Half-normal plot with
simulated envelope for the randomized quantile
residuals — Survival time

F I G U R E 4 Half-normal plot with
simulated envelope for the randomized quantile
residuals — Time to infection

age40 (𝛿1) was only statistically significant under the nonmixture model, although the upper limit of the 95% confidence interval
for 𝛿1 assuming the nonmixture model is very close to zero, indicating some significance of the covariate age40.

A visual inspection of the half-normal plots given in Figure 4 suggests that although all points lie inside the envelope, indi-
cating that there is no serious violation of the model assumptions, it is also observed that the DW mixture model does not fit the
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F I G U R E 5 Half-normal plot with
simulated envelope for the quantile residuals —
Time to metastasis

T A B L E 7 Values of model discrimination criteria (AIC) for mixture and non-mixture models

Mixture Nonmixture
Time Without covariates With covariates Without covariates With covariates
Survival 751.9783 694.6915 754.2051 697.4294

Infection 309.0108 267.6405 309.0300 270.0043

Metastasis 411.5414 370.2743 411.3725 370.9714

data as well as the DW nonmixture model, since most of the observed residuals of the mixture model are near to the boundary
of the envelope.

The results of Table 6 related to the metastasis times indicate that the covariate chemotherapy (𝛿3) and tumor volume are
statistically significant for both the mixture and nonmixture models. The significance of theses covariates reveal that the proba-
bility of being “cured,” depends if the patients received or not the chemotherapy, which means that individuals who received the
chemotherapy seem to have lower chance of not presented metastasis compared to individuals who do not received chemother-
apy. Additionally, we expected that as the tumor volume increases the odds of not presented metastasis decreases, since the
parameter 𝛿6 has negative sign.

The simulated envelope plots of the mixture and nonmixture models corresponding to the metastasis time are shown in
Figure 5. For both models, we can see that most of the observed randomized quantile residuals are within the simulated envelope,
showing no evidence of violated model assumptions.

Table 7 reports the AIC values considering the regression model and the model not including the effects of the covariates.
From these results, it is observed that the mixture and nonmixture models have the similar values of AIC. Regardless the response
variable it is verified that the model with covariates presented the smallest values of AIC. However, for the time to infection the
AIC values indicated no improvement on the fit to the data, as expected, since for this time the covariates were not significant.

6 CONCLUDING REMARKS

The main goal of this paper was the introduction of mixture and nonmixture cure fraction models assuming a discrete Weibull
distribution in place of standard existing continuous lifetime distributions, with special application to the statistical analysis
of a dataset related to long-term oncological treatment outcomes of resection of pelvic sarcomas. The obtained results of this
study show many advantages for the use of discrete cure fraction models in terms of great accuracy for the obtained point and
interval inferences, great computational simplicity to get the inferences of interest under the classical approach and with simple
interpretations for the parameters of the models that is an important point in medical applications. In this way, the results of
this study could be of great interest for the search of appropriate univariate lifetime distributions in presence of cure fraction,
censored data and covariates. It was also observed that using regression models, the identification of important covariates was
easily obtained with good accuracy assuming the DW model. These results are implication of the best simplicity of the likelihood
function assuming the DW model when compared to standard continuous Weibull cure fraction models commonly used in the
analysis of lifetime data in presence of cure fraction, censored data and covariates.
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