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ABSTRACT
In this paper considering an appropriate transformation on the Lind-
ley distribution, we propose the unit-Lindley distribution and inves-
tigate some of its statistical properties. An important fact associated
with this new distribution is that it is possible to obtain the analytical
expression for bias correction of the maximum likelihood estima-
tor. Moreover, it belongs to the exponential family. This distribution
allows us to incorporate covariates directly in the mean and conse-
quently to quantify their influences on the average of the response
variable. Finally, a practical application is presented to show that our
model fits much better than the Beta regression.
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1. Introduction

In applied statistics, a common issue is to deal with the uncertainty phenomena observed
in the bounded interval (0, 1). Very often in real life we encountermeasures like proportion
or fraction of a certain characteristic, scores of some ability tests, different indices and rates,
which lie in the interval (0, 1) (see, for instance, [3,6,10,11,14,22,24], amongothers studies).
In such cases continuous distributions with domain (0, 1) are indispensable to probabilistic
modeling of the phenomena. The two parameter Beta distribution (or the Pearson type IV
distribution) is the most widely used model for such data in practice, mainly because its
flexibility [13]. Thoughmany distributions were proposed and studied as alternatives there
is still no agreement on preference of a particular model.

In this paper we introduce a one parameter unit-Lindley distribution, [19], derived
from a transformation on the Lindley distribution. As far as we know the only other
one-parameter distribution in the unit interval is the Topp–Leone distribution [25]. Nev-
ertheless, the Topp–Leone distribution does not posses important properties such as close
form expressions for the moments.

The main advantage of the unit-Lindley distribution lies on the fact that practitioners
will have a new quite flexible, unimodal one-parameter distribution which posses several
vital properties that other distributions restricted to the interval (0, 1) do not enjoy. For
instance, the unit-Lindley distribution has only a single parameter and closed form expres-
sions for cumulative distribution function (c.d.f), quantile function and simple expression

CONTACT Josmar Mazucheli jmazucheli@gmail.com

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2018.1511774&domain=pdf
http://orcid.org/0000-0001-6740-0445
mailto:jmazucheli@gmail.com


2 J. MAZUCHELI ET AL.

for moments unlike the well known Beta distribution (having two parameters, no closed
form for c.d.f. and quantile function) and Kumaraswamy distribution (with two param-
eters, no closed form for moments). Moreover because of its simple formula for mean
the unit-Lindley distribution allows us to directly incorporate the covariates in the mean
in order to quantify their average influence on the response variable. This enabled us to
present a new bounded regression model as a viable alternative to the widely used Beta
regression model [2,8].

We provide a comprehensive account of statistical properties of the proposed distri-
bution along with an application with data from the access of people in households with
inadequate water supply and sewage in the cities of Brazil from the Southeast and North-
east regions, to demonstrate that the unit-Lindley regression yields a better fit than the Beta
regression model.

The rest of this paper is structured as follows. In Section 2, we start with the model for-
mulation and investigate several features such asmoments, incompletemoments, behavior
of the cumulative and probability density functions, Lorenz curve and quantile function.
Parameter estimation by two different methods are discussed in Section 3. A simulation
study to investigate the performance of the proposed estimators is presented in Section 4.
A real life application related to the proportion of people with inadequate water supply and
sewage is analyzed in Section 5. We conclude with some discussion in Section 6.

2. The unit-Lindley distribution

The Lindley distribution was introduced by Lindley [18] in the context of Bayesian
inference. Its probability density function (p.d.f) is specified by

f (y | θ) = θ2

1 + θ
(1 + y) exp(−θy), y > 0, θ > 0.

The corresponding c.d.f. is

F(y | θ) = 1 −
(
1 + θ y

1 + θ

)
exp(−θ y). (1)

Ghitany et al. [9] studied the Lindley distribution and outlined that its mathematical
properties are more flexible than those of the exponential distribution.

From (1) using the transformation X = Y/(1 + Y) we propose a new distribution with
support on the unit-interval. The c.d.f. and the p.d.f. of the resulting distribution are given,
respectively, by

F(x | θ) = 1 −
(
1 − θ x

(1 + θ) (x − 1)

)
exp

(
− θ x
1 − x

)
, 0 < x < 1, θ > 0. (2)

f (x | θ) = θ2

1 + θ
(1 − x)−3 exp

(
− θ x
1 − x

)
, 0 < x < 1, θ > 0. (3)

The first derivative of f (x | θ) is
d
dx

f (x | θ) = θ2(θ+3 x − 3)
(1 + θ)(x − 1)5

exp
(

− θ x
1 − x

)
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Figure 1. P.d.f and hazard rate function of unit-Lindley distribution for selected values of θ .

which implies that the p.d.f is unimodal with maximum at Xmax = 1 − θ/3 for θ < 3 and
Xmax = 0 for θ � 3. Figure 1 shows the p.d.f. of the unit-Lindley distribution for selected
values of θ .

In what follows we shall discuss several important statistical properties of the unit-
Lindley distribution.

2.1. Concavity

Proposition 2.1: The c.d.f. of the unit-Lindley is concave for θ > 3.

Proof: The second derivative of F(x | θ) is

F′′(x | θ) = θ2(θ + 3x − 3)
(1 + θ)(x − 1)5

exp
(

− θ x
1 − x

)
.

This implies for all x in (0, 1), F′′(x | θ) > 0 only if θ < 0 therefore it can never be convex
and F′′(x | θ) < 0 if θ > 3. Hence F(x | θ) is concave function of x for θ > 3. �

Proposition 2.2: The c.d.f. of the unit-Lindley is bounded for θ > 3/2 as follows.

xθ ≤ F(x | θ) ≤ 1 − exp
(

− θ x
1 − x

)
.

Therefore the c.d.f. can be used to define new premium by distorting survival function
[see 28].

Proposition 2.3: The p.d.f. of the unit-Lindley is log-concave for all 0< x<1 if θ ≥ 3
2 .
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Proof: The second derivative of F(x | θ) is

F′′(x | θ) = θ2(θ + 3x − 3)
(1 + θ)(x − 1)5

exp
(

− θ x
1 − x

)
.

We know that f (x | θ) is log-concave (log-convex) function of x if for all x in (0, 1)
d
dx log f (x | θ) is a non-increasing (non-decreasing) function of x. Note that

d2

dx2
log f (x | θ) = d

dx
f ′(x | θ)
f (x | θ) = d

dx
θ + 3(x − 1)
(x − 1)2

= 2θ + 3(x − 1)
(x − 1)3

.

This is always< 0 for all x in (0, 1) when θ ≥ 3
2 .

Hence f (x | θ) is log-concave for all 0< x<1, if θ ≥ 3
2 . �

As a consequence of the above proposition the following results hold for unit-Lindley
distribution when θ ≥ 3

2 :

• f (x | θ) is log-concave for all 0< x<1;
• ∫ x

0 F(t) dt is log-concave for all 0< x<1;
• F̄(x | θ) is log-concave for all 0< x<1;
• ∫ 1

x F̄(t) dt is log-concave for all 0< x<1;
• f (x|θ)

F̄(x|θ) is monotone increasing function in x for all 0< x<1;
• Mean residual life (MRL) is a decreasing function of x;
• The distribution is strongly unimodal;
• All moments exist;
• At most has an exponential tail.

2.2. Hazard rate function

The hazard rate function of the unit-Lindley distribution is given by

h(x | θ) = f (x | θ)
1 − F(x | θ) = θ2

(θ − x + 1) (x − 1)2
, 0 < x < 1. (4)

Since d/dxh(x | θ) = θ2/((x + 1)3(θ − x + 1)2) [2θ − 3(x − 1)]> 0 for all θ > 0 the
hazard rate function is increasing in x. Note that lim

x→0
h(x | θ) = θ2/(1 + θ)while lim

x→1
h(x |

θ) = ∞. The behavior of h(x | θ) considering different values of θ is illustrated on the right
side of Figure 1.

2.3. Moments

The kth moment about origin of the unit-Lindley distribution is given by

μk′ = E(Xk) = k
(1 + θ)

∫ 1

0

xk−1(1 − θ + x)
(1 − x)

exp
(

− θ x
1 − x

)
, dx k = 1, 2, . . . ,
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Figure 2. Mean, variance, skewness and kurtosis of unit-Lindley as a function of θ .

which can not be solved analytically. In particular, for k=1,2,3,4 we get

μ′
1 = 1

1 + θ
,

μ′
2 = 1

1 + θ

(
θ2eθEi(1, θ)− θ + 1

)
,

μ′
3 = 1

1 + θ

(
eθEi (1, θ) θ3 + 3 θ2eθEi(1, θ)− θ2 − 2 θ + 1

)
,

μ′
4 = 1

2 (1 + θ)

(
eθEi (1, θ) θ4 + 8 eθEi (1, θ) θ3 − θ3

+12 θ2eθEi(1, θ)− 7 θ2 − 6 θ + 2
)
,

where Ei(a, z) = ∫ ∞
1 z−ae−xz dx is the exponential integral function [1].

From the plots of the mean, variance, skewness and kurtosis of the unit-Lindley dis-
tribution presented in Figure 2 it is observed that the mean decreases and skewness
increases with the increase in θ whereas, the kurtosis initially decreases then increases
with θ .
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2.4. Incompletemoments

The kth incomplete moment of the unit-Lindley distribution is given by

Tk(t) = E

(
Xk | x < t

)
= k
(1 + θ)

∫ t

0

xk−1 (1 − θ + x)
(1 − x)

exp
(

− θ x
1 − x

)
dx, k = 1, 2, . . .

which can not be solved analytically. In particular, for k=1,2 we have

T1(t) = [1 + (θ − 1) t] et−θ/(t−1)

(t − 1) (θ + 1)
,

T2(t) =
e
t−θ
t−1 + (t − 1)

[
θ2eθ (θ + 3)Ei(1, θ)− θ2 − 2θ + 1

]
−θ2eθ (θ + 3)(t − 1)Ei (1,−θ/(t − 1))

[(2 t − 1) θ − t + 1 ]
.

2.5. MRL function

For a non-negative continuous random variable X the MRL function is defined as μ(x |
θ) = E(X − x | X > x) and is given by

μ(x | θ) = 1
S(x | θ)

∫ ∞

x
S(y | θ) dy.

For the unit-Lindley distribution, we get μ(x | θ) = (x − 1)2/(1 + θ + x). Note that
lim
x→0

μ(x | θ) = 1/(1 + θ) while lim
x→1

μ(x | θ) = 0.

2.6. Quantile function

Let X be a unit-Lindley random variable with c.d.f (2). The quantile function,
Q(p) = F−1(p), can be written as

Q(p | θ) = 1 + θ + W−1
(
(1 + θ) (p − 1) e−(1+θ)

)
1 + W−1

(
(1 + θ) (p − 1) e−(1+θ)

) , (5)

such that 0<p<1 and W−1 denotes the negative branch of the Lambert W function.
The Lambert W function is a multivalued complex function defined as the solution of
the equation W(z) exp[W(z)] = z. For more on Lambert W function interested readers
may refer to [4,12,26] and references cited therein.

2.7. Mean deviation

As pointed out, for example in [9], the amount of scatter in a population is measured to
some extent by the totality of deviations from the mean and the median. These are known
as the mean deviation about the mean and the mean deviation about the median and are



JOURNAL OF APPLIED STATISTICS 7

defined as

δ(X) =
∫ ∞

x
|X − m| f (x | θ) dx = 2

[
mF (m)−

∫ m

0
xf (x | θ) dx

]
, (6)

withm = E(X) orm = Median(X), respectively . Considering (2) and (3) in (6) we get:

δ (X) = 2
1 + θ

([
e−θ m/(1−m)(1 − m)+ m(1 + θ)− 1

])
.

Form = E(X)we get δ(X) = 2θe−1/((1 + θ)2). Consideringm = Q(0.5 | θ)we have the
expression for the mean deviation about the median. The expression for Q(· | θ) is given
in Section 2.6 .

2.8. Lorenz curve

The Lorenz curve for a random variable X is defined as

L(F(q)) = 1
E(X)

E(X | X ≤ q)F(q). (7)

For the unit-Lindley distribution we have

E(X | X ≤ q)(q) = 1
(1 + θ)

(
q − 1

) [
e−

θ q/(1−q)(1 − q + θ q)+ q − 1
]
.

Hence, from (7) we obtain the Lorenz function for the unit-Lindley distribution as

L(p) = 1
(1 + θ)2(p − 1)

[e−
θ p/(1−p)(1 − p + θ p)+ p − 1],

where q = F−1(p) is given in Section 2.6 .

2.9. Stress strength reliability

Suppose thatX andY are two independent unit-Lindley random variables with parameters
θ1 and θ2, respectively, having p.d.f ’s fX(·) and fY(·). Then the stress-strength reliability
measure [15] is given by

R = P(Y < X) =
∫ 1

0
fX(x | θ1)FY(x | θ2) dx

= θ22
(
θ1θ

2
2 + 2θ21 θ2 + θ31 + θ22 + 4 θ1 θ2 + 3 θ21 + θ2 + 3 θ1

)
(θ1 + θ2)3 (1 + θ2) (1 + θ1)

. (8)
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2.10. Exponential family

A distribution belongs to the exponential family [7] if it is of the form

f (x | θ) = exp[Q(θ),T(x | θ)+ D(θ)+ S(x | θ)].

It can be easily seen that the proposed distribution belongs to the exponential family by
rewriting the pdf in Equation (3) as

f (x | θ) = exp
[
− θ x
1 − x

]
exp

[
log

θ2

1 + θ

]
exp

[
log(1 − x)−3] ,

where Q(θ) = θ ,T(x | θ) = x
1−x ,D(θ) = log θ2

1+θ , S(x | θ) = log(1 − x)−3.
Therefore, T(x) = ∑n

i=1
xi

1−xi is a complete sufficient estimator for θ based on a sample
of size n from the proposed distribution. Beside that, since the distribution is exponential
family a minimum-variance unbiased estimator can be obtained by bias corrected MLE.

3. Estimation

In this section, we shall consider the estimation of parameter θ of the unit-Lindley
distribution by the maximum likelihood method and method of moments. For the max-
imum likelihood estimator (MLE) of θ we derive the closed-form expressions for the
second-order bias-correction.

3.1. Maximum likelihood estimator

LetX1, . . . ,Xn be a random sample from the unit-Lindley distributionwith p.d.f. (3). Then,
for observed x = (x1, . . . , xn), the log-likelihood function of θ can be written as

�(θ | x) ∝ 2n log θ − n log(1 + θ)− θ t(x), (9)

where t(x) = ∑n
i=1

xi
1−xi . The maximum likelihood estimate θ̂ of θ is obtained by solving

the following linear equation

d
dθ

�(θ | x) = 2n
θ

− n
1 + θ

− t(x) = 0,

which gives

θ̂ = 1
2t(x)

[n − t(x)+
√
t(x)2 + 6 n t(x)+ n2]. (10)

Next

d2

dθ2
�(θ | x) = n

(1 + θ)2
− 2n
θ2
< 0

for all θ , in particular for θ = θ̂ .
Since d2/dθ2�(θ | x) is data-independent, we have that n E[d2dθ2 log f (X | θ)] =

d2/dθ2 �(θ | x). Thus, the expected Fisher information is I(θ̂ ) = 2 n/θ2 − n/((1 + θ)2).
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From the large sample theory [see, 17, pp. 461–463], the asymptotic distribution of MLE θ̂
of θ is such that

√
n (θ̂ − θ)

D→ N(0,V(θ̂ )),

where D→ denotes convergence in distribution and V(θ̂) is just the inverse of the expected
Fisher information written as V(θ̂) = (θ2 (1 + θ)2)/(n (θ2 + 4 θ + 2)). It is easy to
see that for ψ = g(θ) = E(X) ψ̂ = Ê(X) = 1/1 + θ̂ and V(ψ̂) = θ2/(n (θ2 + 4 θ + 2)).
Hence, the asymptotic 100 (1 − α)% confidence intervals for θ and ψ are given, respec-
tively, by

θ̂ ± zα/2

√
θ̂2 (1 + θ̂ )2

n (θ̂2 + 4 θ̂ + 2)
and

1
1 + θ̂

± zα/2

√
θ̂2

n (θ̂2 + 4 θ̂ + 2)
,

where zα/2 is the upper α/2 quantile of the standard Normal distribution.
It is important to note that for a Bayesian analysis we can use the Jeffreys invariant prior

for θ , given by π(θ) ∝ √
I(θ). The Bayesian procedure is not considered in this paper.

Cox and Snell [5] provided a framework for estimating the bias, toO(n−1) for theMLEs
of the parameters of regular densities. Hence, subtracting the estimated bias from the origi-
nal MLE produces a bias-corrected estimator (BCE) that is unbiased toO(n−2). Following
Cox and Snell [5] the analytical expression for bias-correction of an scalar θ̂ , given by

B (
θ̂
) = (

κ11
)2 [

0.5 κ111 + κ11,1
] + O(n−2), (11)

where

κ11 = E[− d2

dθ2
�(θ | x)]−1 = θ2 (1 + θ)2

n(θ2 + 4 θ + 2)
,

κ11,1 = E[− d2

dθ2
�(θ | x)× d

dθ
�(θ | x)] = 0 and

κ111 = E[− d3

dθ3
�(θ | x)] = 2 n(θ3 + 6 θ2 + 6 θ + 2)

θ3 (1 + θ)3
.

Thus, the bias-corrected MLE θ̃ is

θ̃ = θ̂ − θ̂5 + 7 θ̂4 + 12 θ̂3 + 8 θ̂2 + 2 θ̂
(θ̂2 + 4 θ̂ + 2)2 n

, (12)

where the right-hand side is B̂(θ̂).
Re-parameterizing (3) in terms of the mean μ = 1

1+θ , the maximum likelihood of μ is
obtained as

μ̂ = − 1
2 t(x)

[
n + t(x)−

√
t(x)2 + 6 n t(x)+ n2

]
,

and the corresponding bias-corrected MLE μ̃ of μ as

μ̃ = μ̂− 2 μ̂2 (2 μ̂− 2)
n (μ̂2 − 2 μ̂− 1)2

.
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3.2. Method ofmoment estimator

Let X1, . . . ,Xn be a random sample from the unit-Lindley distribution with p.d.f (3). Then
the method of moment estimator (MME) θ̂MME of θ is given by

θ̂MME = 1 − X
X

= 1
X

− 1, (13)

which is positively biased, i.e. E(θ̂)− θ > 0.

Proof: Let θ̂MME = g(X) and g(t) = 1/t − 1 for t>0. Since g′′(t) = 2/t3 > 0, g(t) is
strictly convex. Thus, by Jensen’s inequality, we have E(g(X)) > g(E(X)). Since g(E(X)) =
g(1/(1 + θ)) = θ we get E(θ̂) > θ . �

Using the delta method the asymptotic variance of θ̂MME is given by

V(θ̂MME) = 1/X2
V(X), (14)

where

V(X) = θ2eθEi (1, θ)− θ + 1
n2(θ + 1)

.

4. Simulation study

In this section, we conduct a Monte Carlo simulation in order to evaluate and compare
the finite-sample behavior of the MLEs, its bias-corrected counterpart obtained by the
Cox–Snell methodology (BCE) and the moment estimators (MME) of the parameter θ
of the unit-Lindley distribution.

We have generated samples of size n = 10, 20, 40, 60 and 80 by considering E(X) =
0.1, 0.2, . . . , 0.7, which implies that θ = 9.00, 4.00, . . . , 0.43. To simulate observations from
the unit-Lindley distribution we generated Y from Lindley distribution (see, rlindley
function in LindleyR library) and then used the transformationX = Y/(1 + Y). The simu-
lation experiment was repeatedM = 10, 000 times. The performance evaluation was done
based on the estimated bias and root mean-squared error (RMSE).

Table 1 shows that MLE and MME of θ are positive biased, while the BCE estimator
achieve substantial bias reduction, especially for small andmoderate sample sizes. It is also
observed that the RMSE decreases as n increases, as expected. Additionally, the RMSE of
the corrected estimates are smaller than those of the uncorrected estimates.

5. Real data analysis

In this section, our interest lies in imposing a regression structure for the variable of interest
using the unit-Lindley distribution. In regression analysis it is very common to model the
mean of the response. Since the unit-Lindley distribution has closed form expression for
mean it can be used in this context. It is noteworthy that the re-parametrized p.d.f of the
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Table 1. Estimated bias (root mean-squared error) of θ .

θ n MLE MME BCE

9.00 10 0.9005 (3.3515) 0.7898 (3.3314) 0.0026 (2.9083)
20 0.4240 (2.0844) 0.3688 (2.0877) −0.0011 (1.9398)
40 0.2077 (1.3864) 0.1803 (1.3962) 0.0005 (1.3369)
60 0.1364 (1.1046) 0.1187 (1.1152) −0.0005 (1.0781)
80 0.1036 (0.9488) 0.0904 (0.9588) 0.0013 (0.9315)

4.00 10 0.3634 (1.3720) 0.2918 (1.3718) 0.0058 (1.1965)
20 0.1719 (0.8586) 0.1380 (0.8742) 0.0026 (0.8013)
40 0.0847 (0.5764) 0.0682 (0.5926) 0.0022 (0.5566)
60 0.0553 (0.4625) 0.0438 (0.4770) 0.0008 (0.4519)
80 0.0400 (0.3953) 0.0315 (0.4083) −0.0007 (0.3886)

2.33 10 0.1903 (0.7468) 0.1400 (0.7602) 0.0027 (0.6571)
20 0.0898 (0.4729) 0.0658 (0.4931) 0.0007 (0.4437)
40 0.0444 (0.3162) 0.0328 (0.3347) 0.0010 (0.3061)
60 0.0291 (0.2533) 0.0210 (0.2690) 0.0004 (0.2480)
80 0.0220 (0.2180) 0.0160 (0.2320) 0.0006 (0.2145)

1.50 10 0.1120 (0.4502) 0.0770 (0.4722) 0.0025 (0.3998)
20 0.0536 (0.2877) 0.0365 (0.3105) 0.0014 (0.2712)
40 0.0263 (0.1943) 0.0177 (0.2123) 0.0009 (0.1886)
60 0.0176 (0.1561) 0.0120 (0.1716) 0.0008 (0.1530)
80 0.0134 (0.1338) 0.0092 (0.1477) 0.0008 (0.1318)

1.00 10 0.0648 (0.2847) 0.0395 (0.3097) −0.0018 (0.2562)
20 0.0310 (0.1838) 0.0189 (0.2063) −0.0008 (0.1744)
40 0.0154 (0.1244) 0.0095 (0.1422) −0.0002 (0.1212)
60 0.0102 (0.1000) 0.0063 (0.1152) −0.0001 (0.0983)
80 0.0075 (0.0861) 0.0044 (0.0993) −0.0002 (0.0850)

0.67 10 0.0418 (0.1835) 0.0238 (0.2106) 0.0005 (0.1665)
20 0.0199 (0.1189) 0.0115 (0.1412) 0.0001 (0.1133)
40 0.0097 (0.0808) 0.0056 (0.0975) 0.0000 (0.0789)
60 0.0063 (0.0650) 0.0037 (0.0789) −0.0001 (0.0640)
80 0.0047 (0.0561) 0.0028 (0.0682) −0.0001 (0.0554)

0.43 10 0.0248 (0.1136) 0.0122 (0.1388) 0.0000 (0.1040)
20 0.0116 (0.0743) 0.0054 (0.0941) −0.0004 (0.0711)
40 0.0057 (0.0507) 0.0028 (0.0655) −0.0002 (0.0497)
60 0.0039 (0.0410) 0.0019 (0.0532) 0.0000 (0.0404)
80 0.0029 (0.0354) 0.0014 (0.0459) 0.0000 (0.0350)

unit-Lindley (UL) in terms of the mean can be written as

f (y | μ) = (1 − μ)2

μ (1 − y)3
exp

(
−y (1 − μ)

μ (1 − y)

)
, (15)

where 0 < y < 1 and 0 < μ < 1.
Let Y1, . . . ,Yn be n independent random variables, where Yi ∼ UL(μi), i = 1, . . . , n.

The regression model is defined assuming that the mean of Yi satisfies the following
functional relation

g(μi) = x

i β , (16)

where β = (β1, . . . ,βp)
 is a p-dimensional vector of regression coefficients (p < n) and
x

i = (xi1, . . . , xip) denotes the observations on p known covariates. Note that the variance
of Yi is a function of μi and, as a consequence, of the covariate values, which implies that
non-constant response variances are naturally accommodated into the model. We shall
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assume that the mean link function g(·) is a strictly monotonic and twice differentiable
function that maps (0, 1) into R. Possible candidates for such function are the c.d.f.’s of the
normal or the logistic distribution, among others [see 21].

Under a classical approach, the unknown parameter vector β = (β1, . . . ,βp)
 are
estimated by maximizing the log-likelihood function, which can be expressed as

�(β) =
n∑

i=1
�i(μi), (17)

where

�i(μi) = 2 log(1 − μi)− log(μi)− 3 log(1 − yi)− yi (1 − μi)

μi (1 − yi)
. (18)

The data set used in this section is about the access of people in households with inad-
equate water supply and sewage in the cities of Brazil from the Southeast and Northeast
regions. We are interested in analyzing the association between proportion of households
with inadequate water supply and sewage and some sociodemographic variables of these
cities. This data set are available in http://atlasbrasil.org.br/2013/, consist of 3197 cities and
all variables were measured during the census in 2010.

Specifically, we consider the following covariates: region (REG = 0 for Southeast, REG
= 1 for Northeast), life expectancy (LIFE), income per capita (INCPC) and human devel-
opment index (HDI). We also consider the logit link function which ensures that the
predicted mean stays within bounds (0,1). Hence the regression structure for μi is given
by

logit(μi) = β0 + β1HDIi + β2REGi + β3INCPCi + β4LIFEi. (19)

For the sake of comparison we also fit the Beta regression model [2,8]. The procedure
NLMIXED [23] is used to perform the required computations.

In Table 2 the estimates, the standard errors and the 95% confidence intervals for the
parameters of bothmodels are presented. Although themodels under investigation provide
the same effect of the covariates under the response variable, it can be seen that the esti-
mates of β1 and β2 are quite different. Moreover, looking at the 95% confidence intervals,
we can see that all covariates are significant to explain the mean of the response variable.
For instance, cities with greater values for HDI tend to have less proportion of households
with inadequate water supply and sewage.

Table 2. Summary of the fitted models.

Beta unit-Lindley

Parameter Estimate S. E. 95% C. I. Estimate S. E. 95% C. I.

β0 2.0806 0.6230 (0.8595; 3.3017) 5.7060 0.7831 (4.1712; 7.2409)
β1 −2.8030 0.5875 (−3.9545;−1.6515) −7.8670 0.6239 (−9.0899;−6.6441)
β2 0.8228 0.0475 (0.7297; 0.9160) 0.9736 0.0510 (0.8736; 1.0736)
β3 −0.0014 0.0002 (−0.0018;−0.0010) −0.0012 0.0001 (−0.0014;−0.0009)
β4 −0.0349 0.0098 (−0.0541;−0.0158) −0.0471 0.0127 (−0.0719;−0.0223)
φ 12.7788 0.3515 (12.0898; 13.4678) — — —
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Figure 3. Theoretical and empirical probabilities of the Cox–Snell residuals.

Table 3. Likelihood-based statistics.

Model AIC BIC HQIC Voung (p-value)

unit-Lindley −11,470.6765 −11,440.3266 −11,459.7950 5.5654 (< 0.0001)
Beta −11,038.7573 −11,002.3375 −11,025.6996

In order to evaluate the fitted models, we have calculated the residuals introduced by
Cox and Snell [5]. This residuals are defined as:

êi = − log
[
1 − F̂(yi)

]
, i = 1, . . . , n,

where F̂(·) is an estimated of the c.d.f.
According to Lawless [16] if themodel is appropriate, then the êi should behave approx-

imately like a sample from the standard exponential distribution. Figure 3 shows the
probability–probability plots, where the empirical probabilities of êi are compared with
those of the standard exponential distribution. It is observed that the plotted points for the
unit-Lindley regression are closer to the diagonal line than those of the Beta regression.

To discriminate between the unit-Lindley and the Beta regression models, we compute
the likelihood-based statistics (Akaike’s Information Criterion (AIC), Bayesian Infor-
mation criterion (BIC) and Hannan-Quinn Information Criterion (HQIC)). Finally, we
consider the generalized likelihood statistic introduced by Vuong [27] for comparison of
non-nested models, in an attempt to choose the better regression model. Based on the
results presented in Table 3 we can conclude that the unit-Lindley regression provides the
better fit.

6. Concluding remarks

In many fields of applied science certain indicators, percentages, proportions, ratios and
rates measured in (0, 1) scale are treated as study variables for characterization of dis-
tinct phenomena. The current statistical literature provide very few choices of models to
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deal with such variables. Two main such models are the Beta and Kumaraswamy distribu-
tions. The present paper has contributed a new one parameter probability distributionwith
bounded domain constructed by an simple intuitive variable transformation in the Lind-
ley distribution. Random sample from the distribution can be easily simulated by simple
transformation of sample generated fromLindley distribution. Several statistical properties
of the proposed distribution are studied. Method of moments and maximum likelihood
estimation are discussed and analytical expression for the bias correction of the MLE is
derived. The fact that the unit-Lindley distribution allows us to incorporate a regression
structure in themean of the response variables, admit it to be seen as an alternative which is
more parsimonious compared to the Beta regression model. Application of the proposed
model to a real data set yielded a better fit than the Beta regression model. As such we
envisage that our newdistributionwill be highly utilized across all relevant fields of science.
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