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Improved maximum likelihood estimators for the
parameters of the Johnson SB distribution

Andr�e Felipe Berdusco Menezes and Josmar Mazucheli

Department of Statistics, Universidade Estadual de Maring�a, Maring�a, PR, Brazil

ABSTRACT
In this article, considering the two-parameter Johnson SB distribution,
bounded on the unit interval, we derived, for the first time, the ana-
lytical expressions for bias-reduction of maximum likelihood estima-
tors applying the Cox and Snell methodology. Although, in general,
the analytical expressions are difficult to obtain, for the Johnson dis-
tribution they were simple and easy to implement. From Monte
Carlo simulations, we estimated and compared the regular biases,
the Cox and Snell biases and parametric Bootstrap-based biases. Our
numerical results revealed that the biases should not be neglected
and the bias reduction approaches based on the analytical expres-
sions and Bootstrap are quite and equally efficient. Finally, a real
application is presented and discussed.
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1. Introduction

In reliability, life testing experiments and econometrics, several types of data are mod-
eled by distributions bounded on the unit interval. For example, we see, among others,
Johnson, Kotz, and Balakrishnan (1995), Papke and Wooldridge (1996), Bury (1999),
Gupta and Nadarajah (2004), Cook, Kieschnick, and McCullough (2008) and Jiang
(2013). In this sense, the most used distribution to model random variable in the unit
interval is the Beta distribution, also known as Pearson type IV. The reputation of this
distribution certainly is due to the flexibility of its probability density function
(Johnson, Kotz, and Balakrishnan 1995).
However, several distributions are available as alternatives to the Beta distribution.

Some of them, without exhaustion, are the Johnson SB distribution (Johnson 1949), the
Johnson S0B distribution (Johnson 1955), the Topp–Leone distribution (Topp and Leone
1955), the unit-Gamma distribution (Grassia 1977), the Kumaraswamy distribution
(Kumaraswamy 1980), the LB distribution (Tadikamalla and Johnson 1982), the
McDonald’s generalized beta type I distribution (McDonald 1984), the Simplex distribu-
tion (Barndorff-Nielsen and Jørgensen 1991), the reflected Generalized Topp–Leone dis-
tribution (van Drop and Kotz 2006), the McDonald arcsine distribution (Cordeiro and
Lemonte 2012), the Log–Lindley distribution (G�omez-D�eniz, Sordo, and Calder�ın-Ojeda
2013), the exponentiated Kumaraswamy distribution (Lemonte, Barreto-Souza, and
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Cordeiro 2013), the exponentiated Topp–Leone distribution (Pourdarvish,
Mirmostafaee, and Naderi 2015), the Marshall–Olkin extended Kumaraswamy
(Castellares and Lemonte 2016), the reflected generalized Topp–Leone power series dis-
tribution (Condino and Domma 2016), the transmuted Kumaraswamy distribution
(Shuaib, Robert, and Lena 2016), the size biased Kumaraswamy distribution (Sharma
and Chakrabarty 2016) and the extended arcsine distribution (Cordeiro, Lemonte, and
Campelo 2016). It should be pointed that the majority of these distributions have more
than two parameters, which taking into account data limited amount, may produce
inaccurate estimates. Moreover, many of them involve special functions in their math-
ematical expressions.
An interesting system of distributions, whose support can be restricted to the unit

interval, was proposed by Johnson (1949) received considerable attention in the second
half of the 20th century (Kotz and van Dorp 2004). As pointed out in George (2007),
the Johnson system is able to closely approximate many of the standard continuous dis-
tributions through one of the three functional forms and is thus highly flexible. The
Johnson system accommodates the SB family of distribution, which has a bounded sup-
port and due to its flexibility can be an important alternative to the popular Beta
distribution.
According to Kotz and van Dorp (2004), the Johnson SB distribution was developed

as follows. Let X be a standard normal distribution and consider the transformation:

Y ¼ g�1 X�c
d

� �
; (1)

for some suitable function gð�Þ and parameters c 2 R and d>0. The choice of gð�Þ
determines the support of the distribution, hence from Johnson (1949), by taking

g Yð Þ ¼ log
Y

1� Y

� �
; (2)

we obtain the Johnson SB distribution with unity support and probability density func-
tion written as:

f yjc; d� � ¼ dffiffiffiffiffiffiffiffi
2 p

p 1
y 1� yð Þ exp � 1

2
cþ d log

y
1� y

� �� �2( )
; (3)

where 0<y<1; c 2 R and d>0 are shapes parameters. The corresponding cumulative
distribution function and quantile function are written respectively as

F yjc; d� � ¼ U cþ d log
y

1� y

� �� �
(4)

and

Q pjc; d� � ¼ exp
U�1 pð Þ�c

d

	 

1þ exp

U�1 pð Þ�c
d

	 
 ; (5)

where 0<p<1 and Uð�Þ is the cumulative distribution function of a standard normal
distribution.
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Figure 1 illustrates the behavior of the probability density function of the Johnson SB
distribution for different values of c and d. It is noteworthy that the densities may dis-
play different shapes depending on the values of the two parameters.
Many others Johnson SB distribution characteristics can be found in Johnson (1949)

and Kotz and van Dorp (2004). The parameter estimation of Johnson SB distribution
was studied by several authors. The method of moment was studied by Hill, Hill, and
Holder (1976) and Bacon-Shone (1985), while the estimation based on the percentile
was considered by Johnson (1949), Bukac (1972), Mage (1980) and Slifker and Shapiro
(1980). On the other hand, the maximum likelihood estimation was introduced first by
Kottegoda (1987) and latter by Wheeler (1980), Siekierski (1992) and Zhou and
McTague (1996). It should be mention that these studies considered the Johnson SB
indexed by four parameters.
Although other estimation methods are useful when the distribution is indexed by at

least three parameters, the method of maximum likelihood (Millar 2011; Pawitan 2001)
is the most popular method for statistical inference, since it has several attractive prop-
erties. For instance, they are asymptotically unbiased, efficient, consistent, functional
invariance and asymptotically normally distributed (Edwards 1992; Lehmann 1999). Not
all of these properties are shared with other estimation methods. However, it is notable
that most of these properties depend on the sample size. Indeed, the maximum
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Figure 1. Johnson SB probability density function considering different values of c and d (upper-
panel: d ¼ 0:5 and d ¼ 1:0, respectively; lower-panel: d ¼ 1:5 and d ¼ 2:0, respectively).
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likelihood method produces estimates that have biases of order Oðn�1Þ, where n is the
sample size (Cordeiro and Cribari-Neto 2014). Nevertheless, for small or even moderate
sample size it is important to remove the second-order bias in order to obtain estima-
tors with better properties.
In this article, we shall focus on two different approaches that can be employed to

obtain modified MLEs that are nearly free of bias, specifically, modified MLEs that are
unbiased to second order. First, we derived analytical expressions for the biases through
the methodology proposed by Cox and Snell (1968). Lastly, we considered the
Bootstrap-based bias-adjusted, which had its pioneered Efron (1982).
In the literature there are many works which introduced bias-corrections for the par-

ameter of others distributions. We may mention: Cordeiro et al. (1997), Cribari-Neto
and Vasconcellos (2002), Saha and Paul (2005), Lemonte, Cribari-Neto and
Vasconcellos (2007), Giles and Feng (2009), Lagos-�Alvarez, Jim�enez-Gamero, and Alba-
Fern�andez (2011), Lemonte (2011), Giles (2012a, 2012b), Schwartz, Godwin, and Giles
(2013), Giles, Feng, and Godwin (2013), Teimouri and Nadarajah (2013), Ling and
Giles (2014), Zhang and Liu (2015), Singh, Singh, and Murphy (2015), Teimouri and
Nadarajah (2016), Schwartz and Giles (2016), Wang and Wang (2017), Mazucheli
(2017), Reath, Dong, and Wang (2018), Mazucheli and Dey (2018), Mazucheli,
Menezes, and Dey (2018a, 2018b).
The article unfolds as follows. In Sec. 2 we described the maximum likelihood estima-

tors and asymptotic confidence intervals for the parameters of Johnson SB distribution.
Sec. 3 presents the approaches to bias corrections. In Sec. 4, a simulation study is per-
formed to compare the MLEs and bias corrected MLEs. An application using a real data
set is presented in Sec. 5. Finally, Sec. 6 closes the article with some concluding remarks.

2. Maximum likelihood estimation

Suppose that y ¼ ðy1; :::; ynÞ is a random sample of size n from the Johnson SB distribu-
tion (3) with parameter vector h ¼ ðc; dÞ. The log-likelihood function, dropping con-
stant terms, is written as:

l hjy� � / n log d� 1
2

Xn
i¼1

cþ d log
yi

1� yi

� �� �2
: (6)

The maximum likelihood estimates of the c and d, ĉ and d̂, respectively, can be
obtained solving the nonlinear equations:

@

@c
l hjy� � ¼ �n c�d

Xn
i¼1

log
yi

1� yi

� �
(7)

@

@d
l hjy� � ¼ n

d
�
Xn
i¼1

cþ d log
yi

1� yi

� �� �
log

yi
1� yi

� �
: (8)

From (7) we have ĉ ¼ � d̂
n

Pn
i¼1 log ð yi

1�yi
Þ while for d, the maximum likelihood esti-

mate d̂ must be obtained numerically by solving (8) in d, replacing c by ĉ.
To obtain interval estimation and testing hypothesis for the parameters using the

maximum likelihood estimates ĉ and d̂, we can use the expected Fisher information
matrix, which is obtained from n� Eð� @2

@hi@hj
log f ðyjhÞÞ for i; j ¼ 1; 2 and given by:
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K hjy� � ¼ n
1 � c

d

� c
d

c2 þ 2
� �

d2

2
664

3
775: (9)

From (9), we observe that c and d are not orthogonal, i.e., the maximum likelihood
estimates ĉ and d̂ are not asymptotically independent. The inverse of the expected
Fisher information matrix is given by

K�1 hjy� � ¼ 1
2n

2þ c2 c d
c d d2

� �
(10)

and evaluated at ĉ and d̂ provides the asymptotic variance-covariance matrix of the
maximum likelihood estimates. Since KðhjyÞ is data independent it is equal to the
observed information matrix. Naturally, the asymptotic 100� ð1�aÞ% confidence inter-
vals of c and d, respectively, are then given by

ĉ6za
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar ĉð Þ

q
and d̂6za

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar d̂ð Þ

p
where V̂arðĉÞ and V̂arðĉÞ are elements of the matrix main diagonal defined in (10) and
za
2
is the 100� ð1� a

2Þ% percentile of the standard normal distribution.

3. Bias-corrected MLEs

In what follows, we shall discuss two approaches for bias-reduction the maximum likeli-
hood estimators of the parameters that index the Johnson SB distribution. First, we shall
consider the general formula introduced by Cox and Snell (1968). As reported by the
authors, when the sample data are independent, but not necessarily identically distrib-
uted, the bias of the s-th element of the MLE of h; ĥ, is obtained as:

B ĥs
� �

¼
Xp
i¼1

Xp
j¼1

Xp
l¼1

jsi jjl 0:5jijl þ jij;l½ � þ O n�2ð Þ; (11)

where s ¼ 1; :::; p, jij is the (i, j)-th element of the inverse of the expected Fisher infor-
mation, jijl ¼ E

@3

@ hi @ hj @ hl
lðhjyÞ

h i
and jij;l ¼ E

@2

@ hi @ hj
lðhjyÞ @

@ hl
lðhjyÞ

h i
. For fur-

ther details about this methodology interested reader can consult Cordeiro and Cribari-
Neto (2014).
In respect to the Johnson SB distribution, after some algebra, we verified that:

� j111 ¼ j112 ¼ j121 ¼ j122 ¼ j211 ¼ j212 ¼ j221 ¼ 0;
� j222 ¼ 2n

d3
;

� j11;1 ¼ j11;2 ¼ 0;
� j12;1 ¼ j21;1 ¼ n

d ;

� j12;2 ¼ j21;2 ¼ � nc
d2
;

� j22;1 ¼ � 2nc
d2

and

� j22;2 ¼ 2 n c2þ1ð Þ
d3

:
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By replacing these terms in Eq. (11) we achieved the following expressions for the
second order biases of ĉ and d̂:

B ĉð Þ ¼ 5c
4n

þO n�2ð Þ (12)

and

B d̂ð Þ ¼ 5d
4n

þO n�2ð Þ: (13)

Employing Eqs (12) and (13), we defined the bias-corrected estimators as:

ĉBCE ¼ ĉ� 5ĉ
4n

(14)

and

d̂BCE ¼ d̂� 5d̂
4n

: (15)

We should expect that ĉBCE and d̂BCE have better sampling properties than the first-
order biased maximum likelihood estimators ĉ and d̂, respectively. Nonetheless, as
pointed by Cordeiro and Cribari-Neto (2014), bias-corrections may also increase the
mean-squared error.
The other method that we consider to obtain nearly unbiased estimators for the

Johnson SB distribution is based on the Bootstrap scheme (Efron 1982; Efron and
Tibshirani 1993; Davison and Hinkley 1997). In particular, the Bootstrap bias-correction
handling the data to estimate the bias function. Let ĥð�Þ be the average value of the max-
imum likelihood estimator from B Bootstrap replications, each of them based on a
pseudo-sample of size n generated from (3) using the maximum likelihood estimates ĥ.
Thus, its estimated bias is given by

B̂ ĥð Þ ¼ ĥ �ð Þ�ĥ; (16)

hence yielding the Bootstrap bias-corrected estimator as

ĥPBE ¼ 2ĥ�ĥ �ð Þ: (17)

As well as the analytically corrected estimators, the Bootstrap corrected estimator is
also a method that provides second order bias-correction (Ferrari and Cribari-
Neto 1998).

4. Simulation study

In this section, based on Monte Carlo simulations, we shall evaluate the finite-sample
behavior of the MLEs of c and d and their bias-corrections obtained by Cox–Snell
methodology (BCE) and parametric Bootstrap scheme (PBE). We considered random
samples of size n ¼ 10; 20; 30; 40 and 50 and the parameters values were c ¼
�1:0;�0:3; 0:0; 0:3 and 1.0 and d ¼ 0:5; 1:0; 1:5 and 2.0. To simulate pseudo-random

6 A. F. B. MENEZES AND J. MAZUCHELI



samples from Johnson SB distribution we used the fact describe in Sec. 1, specifically
Eqs (1) and (2). The numbers of Monte Carlo replications in each experiment was set
at M ¼ 10:000 and the numbers of Bootstrap replications was B¼ 1000, thus totaling
100 millions of replications per experiment. All simulation were carried out in Ox
Console (Doornik 2007), using the MaxBFGS function to obtain the maximum likeli-
hood estimates for c and d. The results are shown in Tables 1–4, where we reported the
bias estimates and the root mean-squared errors estimates.
It is observed that the MLEs of c is extremely biased, while for d it is moderate, par-

ticularly for the small samples size. We may mention, the scenario when n¼ 10, c ¼ 1:0
and d ¼ 0:5 the biases of the MLEs of c and d are 0.1553 and 0.0758, respectively.
Considering the same scenario above we observed that proposed estimators outperform
the MLEs, which the bias of cBCE, cPBE, dBCE and dPBE are 0.0109, �0.0219, 0.0038 and
�0.0126, respectively. Indeed, these estimators achieve substantial bias reduction, mainly
in small samples size and therefore they are good alternatives to the uncorrected MLEs.
Although the proposed estimators were quite effectively, it should be pointed out that
analytical corrections are done immediately, i.e., it is not necessary a computational
effort. It is noteworthy that for all scenarios the maximum difference between the bias
of MLE and BCE of c and d were 28.89 and 14.41%, respectively, for the MLE and PBE
the difference were 17.72 and 35.44%, respectively and for the BCE and PBE were 3.28
and 6.56%, respectively. Based on these differences we concluded that the BCE and PBE
really provided the bias reduction for both parameters. As expected, the reduction mag-
nitude is generally smaller for larger n.

Table 1. Estimated bias (root mean-squared error), d ¼ 0:5.

Estimator of d Estimator of c

c n MLE BCE PBE MLE BCE PBE

�1.0 10 �0.1586 (0.5244) �0.0137 (0.4376) 0.0192 (0.4241) 0.0776 (0.1751) 0.0054 (0.1375) �0.0109 (0.1334)
20 �0.0765 (0.3162) �0.0093 (0.2877) �0.0024 (0.2859) 0.0347 (0.0984) 0.0013 (0.0863) �0.0022 (0.0858)
30 �0.0482 (0.2421) �0.0045 (0.2274) �0.0017 (0.2267) 0.0221 (0.0745) 0.0003 (0.0682) �0.0011 (0.0680)
40 �0.0356 (0.2046) �0.0033 (0.1952) �0.0016 (0.1950) 0.0164 (0.0627) 0.0002 (0.0586) �0.0005 (0.0586)
50 �0.0291 (0.1809) �0.0034 (0.1741) �0.0023 (0.1740) 0.0131 (0.0548) 0.0003 (0.0519) �0.0002 (0.0519)

�0.3 10 �0.0461 (0.3943) �0.0029 (0.3426) 0.0069 (0.3320) 0.0754 (0.1727) 0.0035 (0.1360) �0.0128 (0.1325)
20 �0.0192 (0.2507) 0.0008 (0.2343) 0.0027 (0.2329) 0.0338 (0.0985) 0.0004 (0.0868) �0.0030 (0.0863)
30 �0.0119 (0.1979) 0.0011 (0.1894) 0.0020 (0.1889) 0.0208 (0.0741) �0.0009 (0.0681) �0.0023 (0.0680)
40 �0.0088 (0.1688) 0.0008 (0.1633) 0.0013 (0.1631) 0.0152 (0.0620) �0.0009 (0.0582) �0.0017 (0.0582)
50 �0.0082 (0.1491) �0.0005 (0.1452) �0.0001 (0.1451) 0.0121 (0.0546) �0.0007 (0.0519) �0.0012 (0.0519)

0.0 10 0.0020 (0.3834) 0.0018 (0.3355) 0.0019 (0.3251) 0.0778 (0.1736) 0.0056 (0.1359) �0.0108 (0.1319)
20 0.0023 (0.2442) 0.0021 (0.2290) 0.0022 (0.2275) 0.0349 (0.0987) 0.0015 (0.0866) �0.0019 (0.0861)
30 0.0029 (0.1945) 0.0027 (0.1864) 0.0027 (0.1860) 0.0231 (0.0764) 0.0013 (0.0698) �0.0001 (0.0696)
40 0.0038 (0.1647) 0.0037 (0.1595) 0.0037 (0.1593) 0.0171 (0.0635) 0.0010 (0.0592) 0.0002 (0.0592)
50 0.0034 (0.1463) 0.0033 (0.1426) 0.0033 (0.1426) 0.0136 (0.0558) 0.0008 (0.0528) 0.0003 (0.0527)

0.3 10 0.0425 (0.3919) �0.0003 (0.3408) �0.0099 (0.3301) 0.0754 (0.1729) 0.0035 (0.1362) �0.0129 (0.1325)
20 0.0168 (0.2461) �0.0030 (0.2302) �0.0049 (0.2286) 0.0330 (0.0979) �0.0003 (0.0864) �0.0037 (0.0860)
30 0.0117 (0.1969) �0.0013 (0.1884) �0.0021 (0.1880) 0.0217 (0.0743) �0.0001 (0.0681) �0.0015 (0.0680)
40 0.0090 (0.1685) �0.0006 (0.1630) �0.0011 (0.1628) 0.0157 (0.0619) �0.0004 (0.0580) �0.0012 (0.0579)
50 0.0071 (0.1503) �0.0006 (0.1463) �0.0008 (0.1462) 0.0126 (0.0540) �0.0003 (0.0512) �0.0007 (0.0512)

1.0 10 0.1553 (0.5115) 0.0109 (0.4266) �0.0219 (0.4134) 0.0758 (0.1717) 0.0038 (0.1349) �0.0126 (0.1311)
20 0.0728 (0.3118) 0.0058 (0.2843) �0.0010 (0.2825) 0.0351 (0.0999) 0.0016 (0.0877) �0.0017 (0.0871)
30 0.0473 (0.2436) 0.0036 (0.2290) 0.0008 (0.2284) 0.0227 (0.0755) 0.0010 (0.0691) �0.0005 (0.0689)
40 0.0341 (0.2078) 0.0018 (0.1986) 0.0003 (0.1985) 0.0166 (0.0635) 0.0005 (0.0594) �0.0003 (0.0593)
50 0.0279 (0.1825) 0.0022 (0.1759) 0.0012 (0.1759) 0.0132 (0.0553) 0.0004 (0.0524) �0.0001 (0.0524)
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Table 2. Estimated bias (root mean-squared error), d ¼ 1:0.

Estimator of d Estimator of c

c n MLE BCE PBE MLE BCE PBE

�1.0 10 �0.1586 (0.5244) �0.0137 (0.4376) 0.0192 (0.4241) 0.0776 (0.1751) 0.0054 (0.1375) �0.0109 (0.1334)
20 �0.0765 (0.3162) �0.0093 (0.2877) �0.0024 (0.2859) 0.0694 (0.1968) 0.0025 (0.1727) �0.0043 (0.1716)
30 �0.0482 (0.2421) �0.0045 (0.2274) �0.0017 (0.2267) 0.0441 (0.1489) 0.0006 (0.1363) �0.0022 (0.1360)
40 �0.0356 (0.2046) �0.0033 (0.1952) �0.0016 (0.1950) 0.0328 (0.1254) 0.0005 (0.1173) �0.0011 (0.1172)
50 �0.0291 (0.1809) �0.0034 (0.1741) �0.0023 (0.1740) 0.0262 (0.1097) 0.0005 (0.1038) �0.0004 (0.1038)

�0.3 10 �0.0461 (0.3943) �0.0029 (0.3426) 0.0069 (0.3320) 0.1509 (0.3455) 0.0070 (0.2720) �0.0256 (0.2649)
20 �0.0192 (0.2507) 0.0008 (0.2343) 0.0027 (0.2329) 0.0675 (0.1971) 0.0008 (0.1736) �0.0060 (0.1726)
30 �0.0119 (0.1979) 0.0011 (0.1894) 0.0020 (0.1889) 0.0416 (0.1481) �0.0018 (0.1363) �0.0046 (0.1360)
40 �0.0088 (0.1688) 0.0008 (0.1633) 0.0013 (0.1631) 0.0305 (0.1240) �0.0017 (0.1165) �0.0033 (0.1164)
50 �0.0082 (0.1491) �0.0005 (0.1452) �0.0001 (0.1451) 0.0242 (0.1092) �0.0015 (0.1038) �0.0024 (0.1038)

0.0 10 0.0020 (0.3834) 0.0018 (0.3355) 0.0019 (0.3251) 0.1556 (0.3472) 0.0112 (0.2718) �0.0216 (0.2639)
20 0.0023 (0.2442) 0.0021 (0.2290) 0.0022 (0.2275) 0.0698 (0.1975) 0.0030 (0.1732) �0.0039 (0.1722)
30 0.0029 (0.1945) 0.0027 (0.1864) 0.0027 (0.1860) 0.0462 (0.1528) 0.0026 (0.1396) �0.0003 (0.1393)
40 0.0038 (0.1647) 0.0037 (0.1595) 0.0037 (0.1593) 0.0343 (0.1270) 0.0020 (0.1185) 0.0005 (0.1184)
50 0.0034 (0.1463) 0.0033 (0.1426) 0.0033 (0.1426) 0.0273 (0.1116) 0.0016 (0.1055) 0.0006 (0.1054)

0.3 10 0.0425 (0.3919) �0.0003 (0.3408) �0.0099 (0.3301) 0.1508 (0.3459) 0.0070 (0.2724) �0.0258 (0.2650)
20 0.0168 (0.2461) �0.0030 (0.2302) �0.0049 (0.2286) 0.0659 (0.1958) �0.0007 (0.1728) �0.0074 (0.1719)
30 0.0117 (0.1969) �0.0013 (0.1884) �0.0021 (0.1880) 0.0434 (0.1487) �0.0001 (0.1363) �0.0029 (0.1359)
40 0.0090 (0.1685) �0.0006 (0.1630) �0.0011 (0.1628) 0.0314 (0.1238) �0.0008 (0.1160) �0.0024 (0.1159)
50 0.0071 (0.1503) �0.0006 (0.1463) �0.0008 (0.1462) 0.0251 (0.1080) �0.0005 (0.1024) �0.0015 (0.1024)

1.0 10 0.1553 (0.5115) 0.0109 (0.4266) �0.0219 (0.4134) 0.1516 (0.3434) 0.0076 (0.2697) �0.0252 (0.2622)
20 0.0728 (0.3118) 0.0058 (0.2843) �0.0010 (0.2825) 0.0701 (0.1997) 0.0033 (0.1753) �0.0035 (0.1743)
30 0.0473 (0.2436) 0.0036 (0.2290) 0.0008 (0.2284) 0.0455 (0.1511) 0.0019 (0.1381) �0.0010 (0.1377)
40 0.0341 (0.2078) 0.0018 (0.1986) 0.0003 (0.1985) 0.0332 (0.1270) 0.0009 (0.1187) �0.0006 (0.1186)
50 0.0279 (0.1825) 0.0022 (0.1759) 0.0012 (0.1759) 0.0264 (0.1107) 0.0007 (0.1048) �0.0003 (0.1048)

Table 3. Estimated bias (root mean-squared error), d ¼ 1:5.

Estimator of d Estimator of c

c n MLE BCE PBE MLE BCE PBE

�1.0 10 �0.1586 (0.5244) �0.0137 (0.4376) 0.0192 (0.4241) 0.0776 (0.1751) 0.0054 (0.1375) �0.0109 (0.1334)
20 �0.0765 (0.3162) �0.0093 (0.2877) �0.0024 (0.2859) 0.1040 (0.2952) 0.0038 (0.2590) �0.0065 (0.2575)
30 �0.0482 (0.2421) �0.0045 (0.2274) �0.0017 (0.2267) 0.0662 (0.2234) 0.0010 (0.2045) �0.0033 (0.2040)
40 �0.0356 (0.2046) �0.0033 (0.1952) �0.0016 (0.1950) 0.0491 (0.1881) 0.0007 (0.1759) �0.0016 (0.1758)
50 �0.0291 (0.1809) �0.0034 (0.1741) �0.0023 (0.1740) 0.0393 (0.1645) 0.0008 (0.1557) �0.0006 (0.1557)

�0.3 10 �0.0461 (0.3943) �0.0029 (0.3426) 0.0069 (0.3320) 0.2263 (0.5182) 0.0106 (0.4080) �0.0384 (0.3974)
20 �0.0192 (0.2507) 0.0008 (0.2343) 0.0027 (0.2329) 0.1013 (0.2956) 0.0012 (0.2604) �0.0090 (0.2588)
30 �0.0119 (0.1979) 0.0011 (0.1894) 0.0020 (0.1889) 0.0624 (0.2222) �0.0027 (0.2044) �0.0068 (0.2040)
40 �0.0088 (0.1688) 0.0008 (0.1633) 0.0013 (0.1631) 0.0457 (0.1860) �0.0026 (0.1747) �0.0050 (0.1746)
50 �0.0082 (0.1491) �0.0005 (0.1452) �0.0001 (0.1451) 0.0362 (0.1637) �0.0022 (0.1557) �0.0036 (0.1557)

0.0 10 0.0020 (0.3834) 0.0018 (0.3355) 0.0019 (0.3251) 0.2335 (0.5208) 0.0168 (0.4077) �0.0324 (0.3958)
20 0.0023 (0.2442) 0.0021 (0.2290) 0.0022 (0.2275) 0.1047 (0.2962) 0.0044 (0.2598) �0.0058 (0.2583)
30 0.0029 (0.1945) 0.0027 (0.1864) 0.0027 (0.1860) 0.0693 (0.2293) 0.0039 (0.2095) �0.0004 (0.2089)
40 0.0038 (0.1647) 0.0037 (0.1595) 0.0037 (0.1593) 0.0514 (0.1905) 0.0030 (0.1777) 0.0007 (0.1776)
50 0.0034 (0.1463) 0.0033 (0.1426) 0.0033 (0.1426) 0.0409 (0.1674) 0.0024 (0.1583) 0.0009 (0.1581)

0.3 10 0.0425 (0.3919) �0.0003 (0.3408) �0.0099 (0.3301) 0.2262 (0.5188) 0.0105 (0.4087) �0.0387 (0.3974)
20 0.0168 (0.2461) �0.0030 (0.2302) �0.0049 (0.2286) 0.0989 (0.2937) �0.0010 (0.2592) �0.0111 (0.2579)
30 0.0117 (0.1969) �0.0013 (0.1884) �0.0021 (0.1880) 0.0651 (0.2230) �0.0002 (0.2044) �0.0044 (0.2039)
40 0.0090 (0.1685) �0.0006 (0.1630) �0.0011 (0.1628) 0.0472 (0.1857) �0.0012 (0.1740) �0.0035 (0.1738)
50 0.0071 (0.1503) �0.0006 (0.1463) �0.0008 (0.1462) 0.0377 (0.1620) �0.0008 (0.1536) �0.0022 (0.1536)

1.0 10 0.1553 (0.5115) 0.0109 (0.4266) �0.0219 (0.4134) 0.2274 (0.5151) 0.0114 (0.4046) �0.0378 (0.3933)
20 0.0728 (0.3118) 0.0058 (0.2843) �0.0010 (0.2825) 0.1052 (0.2996) 0.0049 (0.2630) �0.0052 (0.2614)
30 0.0473 (0.2436) 0.0036 (0.2290) 0.0008 (0.2284) 0.0682 (0.2266) 0.0029 (0.2072) �0.0015 (0.2066)
40 0.0341 (0.2078) 0.0018 (0.1986) 0.0003 (0.1985) 0.0498 (0.1904) 0.0014 (0.1781) �0.0010 (0.1779)
50 0.0279 (0.1825) 0.0022 (0.1759) 0.0012 (0.1759) 0.0396 (0.1660) 0.0011 (0.1572) �0.0004 (0.1572)
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Furthermore, the root mean squared error of the corrected estimates is smaller than
the uncorrected estimates. Hence, it is notorious that the analytical corrections and
Bootstrap estimator also accomplish a reduction in mean squared error.
In order to evaluate the overall performance of each of the three different estimators,

regarding the bias and root mean squared error, we adopted two measures introduced
by Cribari-Neto and Vasconcellos (2002), also considered in Lemonte (2011). These
measures, shown in Tables 5 and 6, are the integrated bias squared (IBSQ) and the aver-
age root mean-squared error (ARMSE) are calculated for each value of n as follows:

IBSQ nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
20

X20
h¼1

rh;nð Þ2
vuut and ARMSE nð Þ ¼ 1

20

X20
h¼1

RMSEh;n

where rh;n and RMSEh;n are the estimated bias and estimated root mean squared error
for the h-th scenario, h ¼ 1; :::; 20. Overall, the results indicate that both, BCE and PBE
estimators, outperforms the MLE. Among the BCE and PBE methods the differences in
these measures are negligible.

Table 4. Estimated bias (root mean-squared error), d ¼ 2:0.

Estimator of d Estimator of c

c n MLE BCE PBE MLE BCE PBE

�1.0 10 �0.1586 (0.5244) �0.0137 (0.4376) 0.0192 (0.4241) 0.0776 (0.1751) 0.0054 (0.1375) �0.0109 (0.1334)
20 �0.0765 (0.3162) �0.0093 (0.2877) �0.0024 (0.2859) 0.1387 (0.3936) 0.0051 (0.3453) �0.0086 (0.3433)
30 �0.0482 (0.2421) �0.0045 (0.2274) �0.0017 (0.2267) 0.0883 (0.2979) 0.0013 (0.2727) �0.0044 (0.2720)
40 �0.0356 (0.2046) �0.0033 (0.1952) �0.0016 (0.1950) 0.0655 (0.2508) 0.0010 (0.2346) �0.0022 (0.2344)
50 �0.0291 (0.1809) �0.0034 (0.1741) �0.0023 (0.1740) 0.0524 (0.2193) 0.0011 (0.2076) �0.0009 (0.2076)

�0.3 10 �0.0461 (0.3943) �0.0029 (0.3426) 0.0069 (0.3320) 0.3018 (0.6909) 0.0141 (0.5440) �0.0513 (0.5298)
20 �0.0192 (0.2507) 0.0008 (0.2343) 0.0027 (0.2329) 0.1350 (0.3942) 0.0016 (0.3472) �0.0120 (0.3451)
30 �0.0119 (0.1979) 0.0011 (0.1894) 0.0020 (0.1889) 0.0832 (0.2963) �0.0036 (0.2725) �0.0091 (0.2721)
40 �0.0088 (0.1688) 0.0008 (0.1633) 0.0013 (0.1631) 0.0609 (0.2480) �0.0035 (0.2329) �0.0066 (0.2327)
50 �0.0082 (0.1491) �0.0005 (0.1452) �0.0001 (0.1451) 0.0483 (0.2183) �0.0029 (0.2076) �0.0048 (0.2076)

0.0 10 0.0020 (0.3834) 0.0018 (0.3355) 0.0019 (0.3251) 0.3113 (0.6944) 0.0224 (0.5436) �0.0432 (0.5277)
20 0.0023 (0.2442) 0.0021 (0.2290) 0.0022 (0.2275) 0.1397 (0.3950) 0.0059 (0.3464) �0.0077 (0.3444)
30 0.0029 (0.1945) 0.0027 (0.1864) 0.0027 (0.1860) 0.0924 (0.3057) 0.0052 (0.2793) �0.0005 (0.2785)
40 0.0038 (0.1647) 0.0037 (0.1595) 0.0037 (0.1593) 0.0686 (0.2540) 0.0039 (0.2370) 0.0009 (0.2368)
50 0.0034 (0.1463) 0.0033 (0.1426) 0.0033 (0.1426) 0.0545 (0.2232) 0.0032 (0.2110) 0.0011 (0.2108)

0.3 10 0.0425 (0.3919) �0.0003 (0.3408) �0.0099 (0.3301) 0.3016 (0.6917) 0.0139 (0.5449) �0.0516 (0.5299)
20 0.0168 (0.2461) �0.0030 (0.2302) �0.0049 (0.2286) 0.1319 (0.3915) �0.0014 (0.3456) �0.0148 (0.3439)
30 0.0117 (0.1969) �0.0013 (0.1884) �0.0021 (0.1880) 0.0867 (0.2973) �0.0002 (0.2726) �0.0059 (0.2719)
40 0.0090 (0.1685) �0.0006 (0.1630) �0.0011 (0.1628) 0.0629 (0.2476) �0.0016 (0.2320) �0.0047 (0.2318)
50 0.0071 (0.1503) �0.0006 (0.1463) �0.0008 (0.1462) 0.0502 (0.2159) �0.0010 (0.2048) �0.0029 (0.2047)

1.0 10 0.1553 (0.5115) 0.0109 (0.4266) �0.0219 (0.4134) 0.3032 (0.6868) 0.0153 (0.5394) �0.0504 (0.5245)
20 0.0728 (0.3118) 0.0058 (0.2843) �0.0010 (0.2825) 0.1403 (0.3994) 0.0065 (0.3507) �0.0069 (0.3485)
30 0.0473 (0.2436) 0.0036 (0.2290) 0.0008 (0.2284) 0.0909 (0.3022) 0.0038 (0.2762) �0.0019 (0.2755)
40 0.0341 (0.2078) 0.0018 (0.1986) 0.0003 (0.1985) 0.0664 (0.2539) 0.0018 (0.2374) �0.0013 (0.2373)
50 0.0279 (0.1825) 0.0022 (0.1759) 0.0012 (0.1759) 0.0527 (0.2214) 0.0014 (0.2096) �0.0005 (0.2096)

Table 5. Integrated bias squared norm.

Estimator for c Estimator for d

n MLE BCE PBE MLE BCE PBE

10 0.1032 0.0080 0.0141 0.2093 0.0122 0.0330
20 0.0486 0.0052 0.0029 0.0939 0.0032 0.0071
30 0.0311 0.0030 0.0020 0.0605 0.0023 0.0036
40 0.0228 0.0024 0.0020 0.0444 0.0018 0.0026
50 0.0187 0.0022 0.0019 0.0354 0.0015 0.0018
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Finally, based on all the simulation results, it is clear that the second-order bias reduc-
tion can be quite efficient in bringing the corrected estimates closer to their true values.
Although the correction methods are equally efficient, the BCE is easier to apply.

5. Data analysis

Here, we exemplify the performance of the proposed bias-corrected estimators for the
Johnson SB distribution parameters, analyzing a real data set from the literature. We
shall consider the data set corresponding to the monthly water capacity data from the
Shasta reservoir in California, USA, and were taken for the month of February from
1991 to 2010, http://cdec.water.ca.gov/reservoir.html (Nadar, Papadopoulos, and
Kızılaslan 2013). The data have 20 observations and were used by Nadar, Papadopoulos,
and Kızılaslan (2013) and Wang, Wang, and Yu (2017) to fit the Kumaraswamy distri-
bution. It should be mentioned that the authors transformed the data to the interval
0, 1.
The point estimates and the corresponding Bootstrap standard errors (Efron and

Tibshirani 1986) in brackets are reported in Table 7. Note that the corrected estimates
for c is greater than the MLE, while the corrected estimates for d are smaller than the
MLE. An additional Monte Carlo study taking n¼ 20, c ¼ �1:4908 and d ¼ 1:4424 as
the true values for c and d suggests that the maximum likelihood estimates is underesti-
mating c and overestimating d. It is also interesting to note that the bias-corrected
MLEs provide lower standard errors, which means more accurate estimates than the
MLE. Standard errors were obtained by parametric Bootstrap as suggest by Efron and
Tibshirani (1986).
To make a comparison, we also considered the Beta and Kumaraswamy distributions,

since they are widely used to modeling data on the unit interval. Their corresponding
probability density functions are, respectively, written as

f xja; bð Þ ¼ C aþ bð Þ
C að Þ C bð Þ xa�1 1�xð Þb�1 and f xja; bð Þ ¼ a b xa�1 1�xað Þb�1

where a>0 and b>0 are shape parameters.

Table 6. Average root mean-squared error.

Estimator for c Estimator for d

n MLE BCE PBE MLE BCE PBE

10 0.4456 0.3794 0.3676 0.4744 0.3727 0.3623
20 0.2758 0.2545 0.2529 0.2703 0.2376 0.2362
30 0.2162 0.2051 0.2045 0.2053 0.1880 0.1876
40 0.1839 0.1768 0.1766 0.1718 0.1607 0.1606
50 0.1626 0.1575 0.1575 0.1504 0.1425 0.1425

Table 7. MLEs and bias-corrected MLEs (Bootstrap standard-error) for Johnson SB distribution.

Estimators c d

MLE �1.4908 (0.3718) 1.4424 (0.2710)
BCE �1.3976 (0.3613) 1.3522 (0.2533)
PBE �1.3932 (0.3568) 1.3443 (0.2492)
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The maximum likelihood estimates were obtained by optim function R Core Team
(2017). Moreover, we also computed the bias estimates along with the Bootstrap stand-
ard errors using the coxsnell.bc function available in the mle.tools package (Mazucheli
2017) of the @@@R environment (see the @@@R code in appendix). The results are
given in Table 8.
Table 9 shows the values for likelihood-based statistics (Akaike’s Information

Criterion (AIC), corrected Akaike’s Information Criterion (AICc), consistent Akaike’s
Information Criterion (CAIC) and Hannan–Quinn Information Criterion (HQIC)) and
for goodness-of-fit measures (Kolmogorov–Smirnov statistic (KS), Anderson–Darling
statistic (AD) and Cram�er–von Mises statistic (CvM)) evaluated at the analytical bias-
corrected MLEs. The best model is the one which provides the minimum values of
those criteria.
Based on the results from Table 9 we can conclude that the data may have been

modeled by the three distributions, since we cannot reject the null hypothesis of the
goodness-of-fit tests. Nevertheless, it should be point that the Johnson SB distribution
fits the current data better than the others distributions, since it has the lowest values of
AIC, AICc, CAIC and HQIC as well as the values of the goodness-of-fit measures.

6. Conclusion

In this article, we derived closed-form expressions for the second-order biases of the
MLEs of the parameter which indexes the Johnson SB distribution with is supported on
the unit interval. The biases of the proposed estimators are of order Oðn�2Þ, while for
the MLEs they are Oðn�1Þ (Cordeiro and Cribari-Neto 2014). Thus, the biases of the
newly proposed estimators converge to zero faster than those of the MLEs. In addition,
we also considered an alternative bias-correction using the parametric Bootstrap. The
numerical results showed that the bias-correcting schemes are generally effective, even
when the sample size is small. Therefore, we strongly recommended that the corrected
estimators proposed in this article should be used instead of the MLEs, since they are

Table 8. MLEs and bias-corrected MLEs (Bootstrap standard-error) for Beta and Kumaraswamy.

Beta Kumaraswamy

Estimators A b a b

MLE 7.3157 (3.1147) 2.9099 (1.1781) 6.3476 (1.5868) 4.4894 (3.5662)
BCE 6.2191 (2.7972) 2.5032 (1.0716) 5.8336 (1.5296) 3.4762 (2.4866)
PBE 6.0055 (2.6130) 2.4329 (0.9956) 5.7712 (1.5053) 3.0718 (1.9123)

Table 9. Likelihood-based statistics and goodness-of-fit measures evaluated at the analytical bias-corrected MLEs.

Distribution

Statistics Johnson SB Beta Kumaraswamy

AIC �23.4840 �20.8640 �22.5436
AICc �22.7781 �20.1581 �21.8378
CAIC �20.4925 �17.8725 �19.5522
HQIC �23.0952 �20.4752 �22.1549
KS 0.2144 (0.2751) 0.2365 (0.1814) 0.1901 (0.4132)
CvM 0.2324 (0.2131) 0.2843 (0.1496) 0.1949 (0.2788)
AD 1.3220 (0.2251) 1.5434 (0.1667) 1.3092 (0.2292)

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 11



quite efficient in bringing the corrected estimates closer to their true values. Finally, it
should be pointed out that the analytical bias estimators have a great advantage on the
Bootstrap estimators, once they do not require data resampling, being available in
closed form.
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Appendix

In this appendix we present the R code (R Core Team 2017) in order to check the validity of the
analytic expressions using the coxsnell.bc function, available in mle.tools package (Mazucheli
2017). For the coxsnell.bc function we had to provide an @@@R expression with the probability
density function and its logarithm, the sample size, the parameter names, the maximum likeli-
hood estimates and the support of the distribution. In line 30, below, are the evaluated bias cor-
rected estimates presented in Table 7.

1 library(mle.tools)
2
3 loglike.jsb < function(mle)
4 {
5 n < length(x)
6 gamma < mle[1]; delta < mle[2]
7 n � log(delta)�0.5 � sum((gammaþdelta � log(x /

(1�x)))�2)�sum(log((sqrt(2 � pi) � x � (1�x))))
8 }
9
10 x < c(0.3389, 0.7680, 0.4319, 0.8435, 0.7599, 0.7874, 0.7246,

0.8499, 0.7576, 0.696, 0.8116, 0.8423, 0.7853, 0.8287,
0.7837, 0.5802, 0.8156, 0.4307, 0.8474, 0.7426)

11
12 mle < optim(par¼c(1,1), fn¼loglike.jsb, method¼"BFGS",

hessian¼T, control¼list(fnscale¼�1))$par
13
14 pdf < quote (delta / (sqrt (2 � pi ) � x � (1 - x ) ) � exp (-0.5 � (gam-

maþdelta � log ( x / (1- x)))�2)
15
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16 lpdf < quote (log (delta) � 0.5 � (gammaþdelta � log ( x / (1 -
x )))�2)

17
18 coxsnell . bc ( density¼pdf , logdensity¼lpdf, n¼20, parms¼c

("gamma" , " delta"), mle¼c (-1.4908 , 1.4424), lower ¼0 ,
upper ¼1)

19
20 $mle
21 gamma delta
22 �1.4910 1.4420
23
24 $varcov
25 gamma delta
26 gamma 0.10556 �0.05376
27 delta �0.05376 0.0501
28
29 $mle.bc
30 gamma delta
31 �1.3976 1.3522
32
33 $varcov.bc
34 gamma delta
35 gamma 0.09883 �0.04725
36 delta �0.04725 0.04571
37
37 $bias
39 gamma delta
40 �0.09317 0.09015
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