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Abstract

A large number of useful distributions for data analysis are obtained by transforming
di↵erent random variables. An example is the one-parameter unit-Lindley distribution,
obtained by transforming a random variable which has a Lindley distribution. In this pa-
per, we introduce a new one-parameter unit-Lindley distribution, useful for data analysis
in the interval (0,1]. It follows some interesting properties such as having closed form
expressions for the moments, belonging to the exponential family. We also analyze a
practical application having covariates, by setting up a suitable regression and show
that our model fits much better than both unit-Lindley and beta regressions.

Keywords: Maximum likelihood estimation · Proportion data · Regression model
· Unit-Lindley distribution · Unit interval.

Mathematics Subject Classification: Primary 60E05 · Secondary 62F10.

1. Introduction

In many practical applications, one encounters data which is spread out in a bounded
interval. Moreover this interval happens to be (0, 1), where the data would be certain
proportions, ratios or standardized scores. Some of the well known distributions having
supports in (0, 1) are uniform, beta and Kumaraswamy. However all of these contain at least
2 parameters and hence it becomes tedious when it comes to estimation. Further, the beta
distribution doesn’t have closed form expressions for the cumulative distribution function
(CDF), whereas the Kumaraswamy distribution fails to have a closed form expression for
the moments. Some of the only one-parameter distributions in (0, 1) are the Topp-Leone
distribution (Topp and Leone, 1955) and the newly proposed unit-Lindley distribution by
Mazucheli et al. (2019), where the authors have transformed a suitable Lindley distribution.
One of the outlook in recent times has been to transform some existing distributions to get
more useful distributions having specific properties. A lot of work has been done related
to the Lindley distribution in the last few years. Some of the prominent works include
the quasi-Lindley distribution by Shanker and Mishra (2013), the log-Lindley distribution
by Gómez-Déniz et al. (2014), the power-Lindley distribution or the generalized-Lindley
distribution by Nadarajah et al. (2011).
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In this paper we propose a new unit-Lindley (NUL) distribution which is a modification
to the existing unit-Lindley distribution, by picking a di↵erent transformation. This NUL
distribution enjoys several interesting properties such as existence of closed form expres-
sions for the moments, the CDF and belonging to the exponential family. Due to its simple
formula, one can incorporate a regression setup by involving several covariates in the mean
to study their dependence on the response. The advantage of this NUL distribution over
the existing unit-Lindley model can be clearly seen through the real-data application which
we present in Section 4.
In Section 2 we propose the NUL distribution by providing the density and the distribu-

tion functions. We also focus on several interesting properties such as defining the moments,
the HR function, the mean residual life function, the quantile function and others. Section
3 involves estimation properties including both method of moments and maximum likeli-
hood (ML) estimators, where we also provide a bias-corrected ML estimators, in addition
to a regression modeling. In Section 4, we provide the numerical applications of our work.
Extensive simulation analyses are covered by taking a wide range of parameter values. We
fit our proposed NUL model to a real-data from finance which involves a ratio of premiums
plus uninsured losses and the total assets as the response whereas Section 5 provides brief
conclusions.

2. Some Mathematical Results

In the following subsections, we provide a number of key properties of the NUL distribution.

2.1 The NUL distribution

Some probability distributions useful in analyzing data in the unit interval, such as
Johnson SB (Johnson, 1949), Johnson S0

B (Johnson, 1955), unit-Gamma Grassia (1977);
Tadikamalla (1981), unit-Logistic (Tadikamalla and Johnson, 1982), log-Lindley (Gómez-
Déniz et al., 2014), unit-Inverse-Gaussian (Ghitany et al., 2018), unit-Birnbaum-Saunders
(Mazucheli et al., 2018a), unit-Weibull (Mazucheli et al., 2018b) are formulated by trans-
forming specific random variables (RVs). It is important to note that beta and Ku-
maraswamy (Kumaraswamy, 1980) distributions also can be obtained by transformations.
A unit-Lindley distribution was proposed by Mazucheli et al. (2019) by considering the

transformation X = Y/[1 + Y ], where Y ⇠ Lindley(✓) (Lindley, 1958). Here we apply the
transformation X = 1/[1 + Y ], where Y ⇠ Lindley(✓) and propose the distribution of X to
be the NUL distribution. One can easily derive its probability density function (PDF) and
the CDF say, using the inverse transform method. These expressions are given respectively
by

f (x|✓) =
✓2

x3 [1 + ✓]
exp

✓
�✓


1� x

x

�◆
, (1)

F (x|✓) =
[✓ + x]

x [1 + ✓]
exp

✓
�✓


1� x

x

�◆
, (2)

where 0 < x  1 and ✓ > 0. Figure (1) shows the PDF of the unit-Lindley distribution for
selected values of ✓.
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Unlike other distributions such as the unit-Lindley, here we have the possibility of having
observations equal to 1 and from (1) the first derivative of f(x|✓) is

d

dx
f(x|✓) =

✓2[✓ � 3x]

[1 + ✓]x5
exp

✓
�✓


1� x

x

�◆
,

which implies that the PDF is unimodal with maximum at Xmax = ✓/3 for all values of
✓ < 3 and Xmax = 1 for ✓ � 3.
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Figure 1. Probability density function of the NUL distribution for selected values of ✓.
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2.2 Convexity

Proposition 2.1 The CDF of the NUL is convex for ✓ > 3.

Proof The second derivative of F (x|✓) is

F 00(x|✓) =
✓2[✓ � 3x]

x5[1 + ✓]
exp

✓
�
✓[1� x]

x

◆
.

This implies that for all x in (0, 1), F 00(x|✓) < 0 only if ✓ < 0 therefore it can never be
concave and F 00(x|✓) > 0 if ✓ > 3. Hence F (x | ✓) is a convex function of x for ✓ > 3.

Proposition 2.2 The PDF of the unit-Lindley distribution is log-concave for all 0 < x 

1 if ✓ > 3/2.

Proof We know that f(x | ✓) is log-concave (log-convex) function of x if for all x in (0, 1]
d
dx log f(x|✓) is a non-increasing (non-decreasing) function of x. Note that

d2

dx2
log f(x|✓) =

d

dx

f 0(x | ✓)

f(x | ✓)
=

d

dx

[✓ � 3x]

x2
= �

2[✓ � 3x]

x3
�

3

x2
.

This is always < 0 for all x in (0, 1] whenever ✓ > 3/2. Hence f(x | ✓) is log-concave for
all 0 < x  1, if ✓ > 3/2.

2.3 Hazard rate function

The hazard rate (HR) function of the unit-Lindley distribution is given by

h(x|✓) =
f(x|✓)

1� F (x|✓)
=

✓2

[✓ + x]x2
, 0 < x  1.

Since dh(x|✓)dx = �[✓2(2✓ + 3x)]/[x3(✓ + x)2] < 0 for all ✓ > 0 the HR function is
decreasing in x. Note that lim

x!0
h(x|✓) = 1 while lim

x!1
h(x | ✓) = ✓2/[1 + ✓].

2.4 Moments

The k-th moment about origin of the unit-Lindley distribution can be obtained from

µ0
k = E

⇣
Xk

⌘
=

1Z

0

kxk�1

⇢
1�

[✓ + x]

x [1 + ✓]
exp

✓
�✓


1� x

x

�◆�
dx, k = 1, 2, . . . .

In particular, for k = 1, 2, 3, 4 we get

µ0
1 =

✓
1+✓ , µ0

2 =
✓2 exp (✓)Ei(1,✓)

1+✓ ,

µ0
3 =

✓2[1�✓ exp (✓)Ei(1,✓)]
1+✓ , µ0

4 =
✓2[1�✓+✓2 exp (✓)Ei(1,✓)]

2[1+✓] ,

where Ei(a, z) =
R1
1 x�a exp (�xz)dx is the exponential integral function; see Abramowitz

and Stegun (1974).
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The k-th incomplete moment about origin is obtained from

Tk(t) = E
⇣
Xk

|X < t
⌘
=

✓2

[1 + ✓]F (t|✓)

Z t

0
xk�3 exp

✓
�✓


1� x

x

�◆
dx, k = 1, 2, . . . .

and for for k = 1, 2, 3, 4 we have

T1 (t) =
✓t

[✓+t] , T2 (t) =
✓2 exp (✓)tEi(1, ✓t )
[✓+t] exp (✓[t�1]/t) ,

T3 (t) =
✓2t [t�✓Ei(1, ✓t ) exp ( ✓

t
)]

[✓+t] , T4 (t) =
✓2t[t[t�1]+✓2Ei(1, ✓t ) exp ( ✓

t
)]

2[✓+t] .

2.5 Mean residual life function

For a nonnegative continuous RV X the mean residual life function is defined as µ(t|✓) =
E(X � t|X > t) and is given by

µ(t|✓) =
1

S(t|✓)

Z 1

t
S(x | ✓)dx.

For the NUL distribution, we get

µ(t|✓) =
t {[(1 + ✓) t� ✓] � (t, ✓)� exp (✓)t} � (�t, ✓)

t [✓ + t] �
⇣

t
t�1 , ✓

⌘
� [1 + ✓]

,

where � (t, ✓) = exp (✓/t).

2.6 Stress strength reliability

Let X and Y be two independent NUL RVs with parameters ✓1, ✓2 respectively and having
PDF’s fX and fY . Then the stress-strength reliability measure (Kotz and Pensky, 2003)
is given by

R = P (Y < X) =

Z 1

0
fX(x|✓1)FY (x | ✓2) dx

=
✓1

2
⇥
✓1

2✓2 + ✓1
2 + ✓1 + 2 ✓1✓2

2 + 4 ✓1✓2 + 3 ✓2 + ✓2
3 + 3 ✓2

2
⇤

[1 + ✓2] [1 + ✓1] [✓1 + ✓2]
3 .

2.7 Quantile function

Let X be a NUL RV with CDF as given in (2). The quantile function, Q(p) = F�1(p), can
then be written as

Q(p|✓) = �
✓

1 +W [� exp (�(1 + ✓))p(1 + ✓)]
, (3)

such that 0 < p < 1 and W is the Lambert W function which is a multivalued complex
function defined as the solution of the equation W (z) exp[W (z)] = z. For more details on
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the Lambert W function, readers may refer to Corless et al. (1996), Jodrá (2010), Veberić
(2012) and references cited therein.

2.8 Mean deviation

As pointed out, for example in Ghitany et al. (2008), the amount of scatter in a population
is measured to some extent by the totality of deviations from the mean and the median.
These are known as the mean deviation about the mean and the mean deviation about
the median and are defined as

� (X) =

Z 1

x
|X �m| f(x | ✓)dx = 2


mF (m)�

Z m

0
xf(x | ✓)dx

�
, (4)

with m = E(X) or m = Median(X) respectively. Considering (2) and (1) in (4) we get

�(X) =
2m exp(✓(m� 1)/m)

1 + ✓
.

For m = E (X) we get � (X) = 2✓ exp (�1)/(1 + ✓)2. Considering m = Q(0.5|✓) we have
the expression for the mean deviation about the median, where the expression for Q(·|✓)
is given in (3).

2.9 Exponential family

A distribution belongs to the exponential family (Dobson, 2001) if it is of the form

f(x|✓) = exp (Q(✓)T (x | ✓) +D(✓) + S(x | ✓)) .

It can be easily seen that the proposed distribution belongs to the exponential family
by rewriting the PDF given in (1) as

f(x|✓) = exp

✓
�
✓(1� x)

x

◆
exp

✓
log

✓
✓2

1 + ✓

◆◆
exp

�
log(x�3)

�
,

where Q(✓) = ✓, T (x | ✓) = [1� x]/x, D(✓) = log
�
✓2/[1 + ✓]

�
, S(x | ✓) = log(x�3).

Therefore, T (x) =
Pn

i=1 [1� xi]/xi is a complete su�cient estimator for ✓ based on a
sample of size n from the proposed distribution. Besides that, since the distribution belongs
to an exponential family, a minimum-variance unbiased estimator can be obtained by bias
corrected ML estimator.

3. Estimation

In this section, we will derive the method of moments (MME) and ML estimators of
parameter ✓ of a NUL distribution. For the ML estimator of ✓ we derive the closed-form
expressions for the second order bias-correction. In addition, in this section, we consider
regression modeling.
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3.1 Maximum likelihood estimation

Let X1, . . . , Xn be a random sample from the NUL distribution with PDF. (1). Then, for
observed x = (x1, . . . , xn), the log-likelihood function of ✓ can be written as

`(✓|x) / 2n log(✓)� n log(1 + ✓)� ✓t(x).

The ML estimate b✓ of ✓ is obtained by solving the following linear equation

d

d✓
`(✓|x) =

2n

✓
�

n

1 + ✓
� t(x) = 0

which gives

b✓ = 1

2 t(x)

h
n� t(x) +

p
t(x)2 + 6n t(x) + n2

i
.

Next

d2

d✓2
`(✓|x) =

n

(1 + ✓)2
�

2n

✓2
< 0

for all ✓, in particular for ✓ = b✓.
Since d2`(✓|x)/d✓2 is data-independent, we have that nE[d2 log f(X|✓)/d✓2] =

d2`(✓|x)/d✓2. Thus, the expected Fisher information is I(b✓) = 2n/✓2 � n/[1 + ✓]2. From
the large sample theory (Lehmann and Casella (1998, pp. 461-463)), the asymptotic dis-

tribution of ML estimator b✓ of ✓ is such that

p
n (b✓ � ✓)

D
! N

⇣
0,V(b✓)

⌘
,

where
D
! denotes convergence in distribution and V(b✓) is just the inverse of the expected

Fisher information written as V(b✓) = ✓2 [1 + ✓]2/n [✓2 + 4 ✓ + 2]. It is easy to see that for

 = g(✓) = E (X) b = bE (X) = 1/[1 + b✓] and V( b ) = ✓2/n [✓2 + 4 ✓ + 2]. Hence, the
asymptotic 100 (1� ↵)% confidence intervals (CIs) for ✓ and  are given, respectively, by

b✓ ± z↵/2

s
b✓2 [1 + b✓]2

n [b✓2 + 4 b✓ + 2]
and

1

1 + b✓
± z↵/2

s
b✓2

n [b✓2 + 4 b✓ + 2]
,

where z↵/2 is the upper ↵/2 quantile of the standard normal distribution.
It is important to note that for a Bayesian setup, we can use the Je↵reys invariant prior

for ✓, given by ⇡(✓) /
p

I(✓). However we will not consider it further in this paper.
Cox and Snell (1968) provided a framework to estimate the bias, to O(n�1) for the ML

estimates of parameters of regular densities. Hence, subtracting the estimated bias from
the original ML estimator produces a bias-corrected estimator (BCE) that is unbiased to
O(n�2). Following Cox and Snell (1968) the analytical expression for bias-correction of an

scalar b✓, given by

B

⇣
b✓
⌘
=

�
11

�2
[0.5111 + 11,1] +O(n�2),
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where

11 = E


�

d2

d✓2
`(✓|x)

��1

=
✓2 (1 + ✓)2

n (✓2 + 4 ✓ + 2)
,

11,1 = E


�

d2

d✓2
`(✓|x)⇥

d

d✓
`(✓|x)

�
= 0,

and

111 = E


�

d3

d✓3
`(✓|x)

�
=

2n
�
✓3 + 6 ✓2 + 6 ✓ + 2

�

✓3 (1 + ✓)3
.

Thus, the bias-corrected ML estimator e✓ is

e✓ = b✓ �
b✓
h
1 + b✓

i h
b✓3 + 6b✓2 + 6b✓ + 2

i

n
h
b✓2 + 4b✓ + 2

i2 ,

where the right hand side is bB
⇣
b✓
⌘
.

Re-parameterizing (1) in terms of the mean µ = ✓/[1 + ✓], the ML of µ is obtained as

bµ =
1

2n

h
3n+ t(x)�

p
t(x)2 + 6n t(x) + n2

i
,

and the corresponding bias-corrected ML estimator eµ of µ as

eµ = bµ�
2bµ [bµ� 1]2

n [bµ2 � 2]2
.

3.2 Method of moment estimation

Let X1, . . . , Xn be a random sample from the unit-Lindley distribution with PDF (1).

Then, the MME b✓MME of ✓ is given by

b✓MME =
X̄

1� X̄
=


1

X̄
� 1

��1

,

which is positively biased, that is, E(b✓)� ✓ > 0.

Proof Let b✓MME = g(X) and g(t) = t/[1� t] for t > 0. Since g00(t) = �2/[t� 1]3 > 0 for
all t < 1, g(t) is strictly convex. Thus, by Jensen’s inequality, we have E(g(X)) > g(E(X)).

Since g(E(X)) = g (✓/[1 + ✓]) = ✓ we get E(b✓) > ✓.

3.3 Regression analysis

We will now present a real data analysis in order to showcase the applicability of the
proposed distribution. Since the NUL distribution has a closed form expression for the



Chilean Journal of Statistics 61

mean we are able to introduce a new regression model for bounded response variable. The
re-parametrized PDF of the NUL distribution is given by

f(y|µ) =
µ2

[1� µ] y3
exp

✓
�
µ [1� y]

y [1� µ]

◆
, (5)

where 0 < y  1 and 0 < µ  1. Under this parametrization the mean and variance of
NUL distribution are given by

E(Y ) = µ and Var(Y ) =
µ2

1� µ


Ei

✓
1,

µ

1� µ

◆
exp

✓
µ

1� µ

◆
+ µ� 1

�
.

Let Y1, . . . , Yn be n independent RVs, where Yi ⇠ NUL(µi), i = 1, . . . , n with PDF. given
by (5). The NUL regression model is defined assuming that the mean of Yi can be written
as

g(µi) = x>
i �

where � = (�0, . . . ,�(p�1))
> is a p-dimensional vector of unknown regression coe�cients

(p < n) and xi = (1, xi1, . . . , xi(p�1))
> denotes the observations on p known covariates.

Note that the variance of Yi is a function of µi and, as a consequence of the covariate
values, which implies that non-constant response variances are naturally accommodated
into the model.
We shall assume that the mean link function g is a strictly monotonic and twice dif-

ferentiable function that maps (0, 1) into R. Some of the most common link functions
are:

(i) logit: g(µi) = log (µi/(1� µi));
(ii) probit: g(µi) = ��1(µi), where ��1 is the standard normal quantile function;
(iii) complementary log-log: g(µi) = log [� log(1� µi)].

Inferences about the regression coe�cients � can be performed under the likelihood
paradigm (Lehmann and Casella, 1998) . The log-likelihood function based on a sample of
n independent observations is

`(�) / 2
nX

i=1

log(µi)�
nX

i=1

log(1� µi)�
nX

i=1

µi [1� yi]

yi [1� µi]
, (6)

where µi = g�1(x>
i �).

The ML estimates b� of � are obtained by maximizing the log-likelihood function defined
in (6) using standard optimization methods, such as Newton-Raphson or quasi-Newton.
In this paper, the ML estimate were obtained by the quasi-Newton method available in
the SAS/NLMIXED procedure (https://www.sas.com/).
For comparison purpose, we also considered the beta and unit-Lindley regression models.

The PDF of the alternative regression models are:

• Beta regression (Cepeda-Cuervo, 2001; Ferrari and Cribari-Neto, 2004):

f(y|µ,�) =
�(�)

�(µ�)�([1� µ]�)
yµ��1[1� y][1�µ]��1, 0 < y < 1

where 0 < µ < 1 denotes the mean and � > 0 is a precision parameter.

https://www.sas.com/
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• Unit-Lindley regression (Mazucheli et al., 2019):

f(y|µ) =
[1� µ]2

µ [1� y]3
exp

✓
�
y [1� µ]

µ [1� y]

◆
, 0 < y < 1

where 0 < µ < 1 denotes the mean.

To discriminate and choose the best among the proposed models, the Akaike (AIC)
(Akaike, 1974), Schwarz (BIC) (Schwarz, 1978) and corrected Akaike (AICC) (Cavanaugh,
1997) information criteria were used. These measures are defined as follows

AIC = 2 p� 2 log bL, BIC = log(n) p� 2 log bL, AICC =
2n [p+ 1]

n� p� 2
� 2 log bL

where bL is the likelihood evaluated at the ML estimates, p is the number of parameters
in the model and n the number of observations. The decision rule, in all these criteria, is
favorable to the model with the lowest value (Held and Sabanés Bové, 2014). To quantify
the uncertainty associated with these criteria, the non-parametric Bootstrap approach was
used to decide on the final model. We considered 10, 000 independent runs and calculated
the percentage of times each model was selected.
To assess the adequacy of the regression models we used the Cox-Snell residuals and

examined the half-normal plot with simulated envelope (Atkinson, 1981). The Cox-Snell
residuals are defined as

ri = � log
⇣
1� bF (yi)

⌘
, i = 1, . . . , n,

where bF is the estimated CDF. A notable property of the Cox-Snell residuals is that if the
regression model fits the data well, ri’s follow a standard exponential distribution.

4. Numerical results

In this section, we conduct a Monte Carlo simulation in order to evaluate and compare the
finite-sample behavior of the ML estimators, its bias-corrected counterpart obtained by the
Cox-Snell methodology (BCE) and the MME of the parameter ✓ of the NUL distribution.
In addition, in this section, an empirical illustration is conducted.

4.1 Simulation study

We have generated samples ranging from 10 to 90 with a gap of 10 and ✓ =
0.1, 0.5, 1.0, 1.5, 2.0, 3.0 and 4.0. To simulate observations from the proposed distribution
we generated Y from Lindley distribution (see, rlindley function in LindleyR library) and
then used the transformation X = 1/[1 + Y ]. The simulation experiment was repeated
M = 20, 000 times. The performance evaluation was done based on the estimated bias and
estimated root mean squared error (RMSE).
Figure 2 shows that ML estimates and MME of ✓ are positively biased, while the BCE

estimator achieve substantial bias reduction, especially for small and moderate sample
sizes. It is also observed that the RMSE decreases as n increases, as expected. Additionally,
the RMSE of the corrected estimates are smaller than those of the uncorrected estimates.
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Figure 2. Upper Panel: Estimated bias. Lower Panel: Estimated root mean squared error. (1: ✓ = 0.1, 2: ✓ = 0.5,
3: ✓ = 1.0, 4: ✓ = 1.5, 5: ✓ = 2.0, 6: ✓ = 3.0 and 7: ✓ = 4.0).

4.2 Empirical illustration

The real data set considered is presented by Schmit and Roth (1990), and corresponds to
the 73 responses to a questionnaire sent to 374 risk managers of large North American
organizations. The objective of Schmit and Roth (1990) was to evaluate the cost e↵ective-
ness with the management philosophy of controlling the company’s exposure to various
property losses and accidents, taking into account company characteristics such as size
and type of industry.
The response variable y (Firm cost) is the firm-specific ratio of premiums plus uninsured

losses divided by total assets. The covariates associated with this response variable are:

• X1 (Assume): firm-specific ratio of the summation of per occurrence retention levels, as
measured by the corporate risk manager.

• X2 (Cap): 1 if the firm uses a captive and 0 otherwise.
• X3 (Sizelog): log of the firm’s total asset value.
• X4 (Indcost): industry average of premiums plus uninsured losses divided by total assets,

as measured by the 1985 Cost of Risk Survey (a measure of risk).
• X5 (Central): importance of local manager in choosing local retention levels, as measured

by the corporate risk manager.
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• X6 (Soph): importance of analytical tools in making risk management decisions, as
measured by the corporate risk manager.

We assume that the regression structure for the mean is given by

logit(µi) = �0 + �1xi1 + �2xi2 + �3xi3 + �4xi4 + �5xi5 + �6xi6, i = 1, . . . , 73,

where xij are the values of the covariate Xj .
The point estimates and the 95% confidence intervals for the parameters of the three

regression models are given in Table 1. It is observed that the NUL and beta regression
models have the same significant covariates to explain the response variable, which are the
Sizelog and Indcost variables.

Table 1. The ML estimates and the 95% confidence intervals.

NUL UL Beta
Parameter MLE 95% CI MLE 95% CI MLE 95% CI

�0 4.3789 (2.6395, 6.1183) 3.0506 (0.8132, 5.2879) 1.8880 (-0.4096, 4.1855)
�1 -0.0050 (-0.0273, 0.0173) -0.0592 (-0.0830, -0.0354) -0.0121 (-0.0394, 0.0151)
�2 -0.0112 (-0.3780, 0.3556) 1.8972 (1.2649, 2.5295) 0.1780 (-0.2763, 0.6322)
�3 -0.8943 (-1.0709, -0.7176) -0.6606 (-0.8889, -0.4322) -0.5115 (-0.7524, -0.2705)
�4 1.7145 (1.0244, 2.4046) 4.5081 (2.8651, 6.1511) 1.2362 (0.3359, 2.1366)
�5 -0.0538 (-0.1878, 0.0801) 0.0885 (-0.1143, 0.2912) -0.0122 (-0.1836, 0.1593)
�6 0.0012 (-0.0317, 0.0340) -0.0846 (-0.1415, -0.0277) -0.0037 (-0.0455, 0.0380)
� - - - - 6.3305 (4.1300, 8.5311)

Table 2 gives the values of the likelihood-based statistics and one can see that the NUL
regression model provides the best fit, since it has the lowest values of AIC, AICC and
BIC. It is also observed that the NUL was selected approximately 68% of the times as
opposed to the UL and beta models.

Table 2. The likelihood-based statistics of fit.

Criteria NUL UL Beta
AIC (%)† -224.9780 (68.26%) -77.3946 (16.17%) -159.4460 (15.57%)
AICC (%) -223.2549 (68.44%) -75.6715 (16.23%) -157.1960 (15.33%)
BIC (%) -208.9447 (69.16%) -61.3614 (16.42%) -141.1223 (14.42%)

†: % of times out of 10,000 non-parametric Bootstrap runs that the model is selected.

In Figure 3 we present the half-normal plots for the Cox-Snell residuals with simulated
envelopes. It is observed for the NUL regression model that all points lie inside the en-
velopes, suggesting that there is no serious violation of the model assumptions. We can
conclude that NUL regression model provides a good fit to these data and therefore can
be used for inference purposes.
From the inference results of NUL model (see Table 1) it is observed that the mean

of Firm cost is negatively related to the log of the firm’s total asset value (Sizelog). In
contrast, the measure of risk (Indcost) has a positive impact on the mean response.

5. Concluding remarks

The ideas in this paper stem from a recent work which proposed a unit-Lindley distri-
bution by transforming a Lindley random variable appropriately. We applied a slightly
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Figure 3. The half-normal plot with simulated envelope for the Cox-Snell residuals.

di↵erent transformation, yet again to a Lindley random variable and introduced a new one-
parameter unit-Lindley distribution which is capable of describing data which is limited to
the interval (0,1]. Several mathematical properties of the new distribution are presented
in detail and parameter estimation is discussed considering the methods of maximum
likelihood and moments. We also derived an analytical expression for the bias corrected
maximum likelihood estimator. Using a simple re-parametrization of the new distribution
we introduced a newer regression model to describe data in a bounded interval. An ap-
plication of the proposed model to a real dataset from finance shows a better and more
parsimonious fit than the classical beta regression model. As such we envisage that the
new model attracts the attention of practitioners across all relevant fields of science.
A few related ideas for future work could be to provide a Fisher scoring algorithm for

parameter estimation, and to check if this algorithm is equivalent to an iteratively re
weighted least squares, as the model belongs to the exponential family.
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