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ABSTRACT
The Beta distribution is the standard model for quantifying the
influence of covariates on the mean of a response variable on the
unit interval. However, this well-known distribution is no longer
useful when we are interested in quantifying the influence of
such covariates on the quantiles of the response variable. Unlike
Beta, the Kumaraswamy distribution has a closed-form expression
for its quantile and can be useful for the modeling of quantiles
in the absence/presence of covariates. As an alternative to the
Kumaraswamy distribution for the modeling of quantiles, in this
paper the unit-Weibull distribution was considered. This distribu-
tion was obtained by the transformation of a random variable with
Weibull distribution. The same transformation applied to a ran-
domvariablewith Exponentiated Exponential distribution generates
the Kumaraswamy distribution. The suitability of our proposal was
demonstrated to model quantiles, conditional on covariates, with
two simulated examples and three real applications with datasets
from health, accounting and social science. For such data sets, the
obtained fits of the proposed regressionmodel were compared with
those provided by the Beta and Kumaraswamy regression models.
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1. Introduction

In applied statistics, it is very common to deal with the uncertainty of a bounded phe-
nomenon. In several fields of knowledge, we often encounter variables like proportions
of a certain characteristic, scores of some ability tests, different indices and rates, which
lie on the interval (0, 1), see, for instance, [9,11,20,24,26,41,49], among other applications.
In such situations, continuous probability distributions with domain on (0, 1) interval are
crucial to probabilistic modeling of the phenomena. When covariates are associated with
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the response of a continuous response on the unit interval, the Beta regression model,
introduced by Cepeda-Cuervo [7] and Ferrari and Cribari-Neto [14], is the most widely
used model, mainly because of its flexibility and direct parameter interpretation. In this
model, the regression parameters are interpretable in terms of the mean, being the model
intrinsically heteroscedastic accommodating asymmetries [12].

Although the Beta distribution is flexible to fit data on the unit interval, other distri-
butions on the unit interval have been proposed in the literature, such as the Johnson SB
distribution [25], the unit-Gamma distribution [18,50], the Kumaraswamy distribution
[28], the unit-Logistic distribution [51], the simplex distribution [4], the Beta rectangular
distribution [21], among others. These mentioned distributions were extended to explain
the behavior of the response variable in the presence of covariates. For instance, it is pos-
sible to refer the simplex regression model [4], the Beta rectangular regression model [6],
theKumaraswamy regressionmodel [5,37], the Johnson SB regressionmodel [33], the unit-
Gamma regression model [38], the unit-Logistic regression model [13], the Log-Lindley
regression model [17] and the unit-Lindley regression model [35].

Recently, a new probability distribution, called the unit-Weibull distribution, with sup-
port on the unit interval, was proposed byMazucheli et al. [36]. The authors derived several
structural properties and showed that the distribution is very flexible and is highly compet-
itive tomany classical distributions on the unit interval. In contrast to the Beta distribution,
the unit-Weibull distribution has a closed-form expression for the quantile function.

In this paper, we shall formulate a quantile regressionmodel considering a parametriza-
tion of the unit-Weibull distribution in terms of the τ th quantile. By reparameterizing
the unit-Weibull distribution in terms of its quantile function, one gets the interpreta-
tion of its location parameter as being the τ th quantile of the distribution. The strategy
of reparametrizing the probability distribution as a function of quantile was considered by
Mitnik and Baek [37] and Bayes et al. [5] to formulate the Kumaraswamy quantile regres-
sion model. Also, a fully parametric approach to quantile regression which treats both, the
dependence on a single covariate and the random component parametrically, whose con-
ditional distribution is modeled by the Generalized Gamma distribution was considered
by Noufaily [40] and Noufaily and Jones [39].

It is well-known that there are at least three approaches to modeling quantiles condi-
tional on covariates (i) the distribution-free (semiparametric) approach; (ii) the approach
based on a pseudo-likelihood through an asymmetric Laplace distribution, or a mix-
ture distribution and (iii) the parametric approach with traditional maximum likelihood
framework. The current manuscript is classified as the third category.

As discussed in the statistical literature [see, for example, 5,27,37,43,54] the quantile
regression analysis has been used in several contexts and its main advantage, when com-
pared with the conditional-mean regressions, such as Beta regression, is that it provides a
complete view of the conditional distribution by studying distinct quantiles. By employing
quantile regression, such as conditional-median regressions, practitioners will have amore
robust model for outliers than the usual Beta regression. Another advantage lies on the fact
that if the conditional dependent variable is skewed, the median may be more appropriate
when compared with the mean.

It is important to point out that the usual quantile regression is able to approximate the
conditional quantiles of a response variable in the unit interval, by ways of the equivariance
principle. Some relevant literature are [15,16,47,48] and references therein.
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The remainder of this paper is organized as follows. Section 2 contains a brief descrip-
tion of the unit-Weibull distribution, some of its main properties and a new parametriza-
tion is introduced. The unit-Weibull quantile regression model and parameters estimation
are described in Section 3, where we also presented a residual analysis to asses departure
from the underlying distribution. In Section 4, a simulation study is conducted to evalu-
ate finite sample behavior of the maximum likelihood estimators. Three real applications
are presented in Section 5 using the proposed quantile regression model and other well-
known regressionmodels. The paper closeswith somediscussions and directions for future
extensions.

2. The unit-Weibull distribution

Using the transformation Y = e−X , where X follows the two-parameter generalized expo-
nential distribution [19], we obtain the Kumaraswamy distribution [28]. Similarly, if X
follows the two-parameter Weibull distribution [53] with probability density function
(p.d.f.)

g(x | α,β) = αβxβ−1e−αxβ

, x > 0, α,β > 0, (1)

we obtain the unit-Weibull (UW) distribution [36] with p.d.f.

f (y | α,β) = 1
y
αβ(− log y)β−1 exp

[−α(− log y)β
]
, 0 < y < 1, (2)

and cumulative distribution function (c.d.f.) given by

F(y | α,β) = exp
[−α(− log y)β

]
, 0 < y < 1, (3)

where α > 0 and β > 0 are shape parameters. Special cases of the UW distributions
include: the standard uniform distribution over the interval (0,1) (α = β = 1), the power
function distribution (β = 1) and the unit-Rayleigh distribution (β = 2). Therefore, the
new distribution has connection with some well-known distributions, and hence, it can be
very useful in many practical situations.

Since it is not possible to obtain a simple analytic expressions for E(Y), it is difficult to
model themean ofY in the absence/presence of covariates. On the other hand, the quantile
function of the UW distribution has a simple analytic expression given by

Q(τ | α,β) = exp

[
−
(

− log τ

α

)1/β
]
, 0 < τ < 1. (4)

In order to introduce a quantile regression model, we shall re-parametrize (2) in terms of
the τ th quantile μ = Q(τ | α,β) such that α can be written as follows:

α = − log τ(− logμ
)β . (5)

Under this parametrization, the p.d.f. and c.d.f. of the UW distribution can be written,
respectively, as follows:

f (y | μ,β , τ) = β

y

(
log τ

logμ

)(
log y
logμ

)β−1
τ (log y/logμ)β , 0 < y < 1 (6)
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Figure 1. Probability density function of the UW distribution for selected values ofμ, β and τ .

and

F(y | μ,β , τ) = τ (log y/logμ)β , 0 < y < 1. (7)

Hereafter, we shall use the notation Y ∼ UW(μ,β ; τ) where μ ∈ (0, 1) is the quantile
parameter, β > 0 is the shape parameter and τ ∈ (0, 1) is assumed as known.

Figure 1 shows some possible shapes of the p.d.f. of the UW distribution for selected
values of the parameters μ, β and τ . Note that the p.d.f. can assume different shapes
(decreasing, increasing, unimodal, anti-unimodal) according to the values of its parame-
ters. This shape flexibility makes UW distribution suitable for the data analysis on the unit
interval. Furthermore, since μ is the τ th quantile of the distribution of Y, it is a location
parameter on the unit interval.

The behavior of (6), for different values of μ, β and τ , can be studied considering it on
the logarithmic scale. Note that

d
dy

log f
(
y | μ,β , τ

) = −1
y

+ β − 1
y log(y)

+ β2 log(y) log(τ )

β log(μ)y log(y)
(8)

cannot be solved analytically in y. However, for β = 1 we have

d
dy

log f (y, | μ,β , τ) = −1
y

+ log(τ )

y log(μ)
(9)
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which guarantees that (6) is an increasing function in y ifμ < τ and a decreasing function
in y if μ > τ . For β > 1 we have

d2

dy2
log f (y | μ,β , τ) = A(y)

{
β log (τ )B(y)C(y) + 2 log

(
y
)+ (1 − β)

[
1 + log

(
y
)]}

,

(10)
where A(y) = 1/y2 log(y)2, B(y) = [β − log(y) − 1] and C(y) = [log(y) − log(μ)]β .

In this case, for all 0 < μ, τ < 1 and 0< y<1, we have A(y),B(y),C(y) > 0. Thus, the
sign of (10) is always negative which implies that (6) is unimodal for all 0 < μ, τ < 1 and
β > 1. On other hand, for 0 < β , τ ,μ < 1 and 0 < y < 1, we have A(y),C(y) > 0 and
B(y) < 0. Thus, the sign of (10) is always positive which implies that (6) is bathhub for all
0 < β ,μ, τ < 1.

3. The unit-Weibull quantile regressionmodel

Considering the re-parametrized p.d.f (6), we can formulate a quantile regression model
as in [5,37] where they considered for the Kumaraswamy distribution.

Let Y1, . . . ,Yn be n independent random variables, where each Yi, i = 1, . . . , n, follows
the p.d.f. in (6) with unknown quantile parameter μi, unknown shape parameter β and
τ ∈ (0, 1) is assumed as known, that is, Yi ∼ UW(μi,β ; τ). Here the UW quantile regres-
sion model is defined imposing that the quantile μi of Yi satisfies the following functional
relation:

g(μi) = δ� xi, i = 1, . . . , n, (11)

where δ = (δ0, . . . , δp−1)
� is a p-dimensional vector of unknown regression coefficients

(p < n) and xi = (1, xi1, . . . , xi(p−1))
� denotes the observations on p known covariates.

We shall assume that the quantile link function g(·) is a strictly increasing and twice differ-
entiable function thatmaps (0, 1) intoR. There are several possibilities for the link function
g(·). For instance, the most useful well-known link functions are:

(i) logit: g(μi) = log(μi/(1 − μi));
(ii) probit: g(μi) = �−1(μi), where �−1(·) is the standard normal quantile function;
(iii) complementary log-log: g(μi) = log[− log(1 − μi)].

Due to the direct interpretation of the parameters in terms of odds, in this paper we
consider only the logit link. Its interpretation when μi is the mean of the Beta distribution
is given in [14]. When μi is the τ th quantile, 0 < τ < 1, the interpretations are straight-
forward. In addition, a strictly positive link function relating the shape parameter β with
covariateswi, not necessarily equal to xi, can be considered. Of course, other link functions
might be explored.

3.1. Estimation

Let Y1, . . . ,Yn be n independent random variables Yi ∼ UW(μi,β ; τ) where

μi = exp(δ� xi)
1 + exp(δ� xi)

, i = 1, . . . , n,
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under the logit link function. For given τ ∈ (0, 1), let θ = (δ�,β)� be the vector of p+ 1
unknown parameters to be estimated using the method of maximum likelihood.

Using the form of the p.d.f. (6), the log-likelihood function is given by

� (θ) =
n∑

i=1
log

(
β

yi

)
+

n∑
i=1

log
(
log τ

logμi

)
+ (β − 1)

n∑
i=1

log
(
log yi
logμi

)

+ log(τ )

n∑
i=1

(
log yi
logμi

)β

. (12)

The maximum likelihood estimate (MLE) θ̂ = (δ̂
�
, β̂)� of θ = (δ�,β)� is obtained by

the maximizing log-likelihood function �(θ). It is not possible to derive analytical solution
for the MLE θ̂ = (δ̂

�
, β̂)� and must be calculated numerically using some optimization

algorithm such as Newton–Raphson and quasi-Newton. As well as in [14] we suggested to
use it as an initial guess for δ the ordinary least squares estimates of this parameter vector
obtained from the linear regression of the transformed responses g(y1), . . . , g(yn) on X,
i.e.(X� X)−1 X� z, where z = (g(y1), . . . , g(yn))�.

Under mild regularity conditions [see, for example, 32] and when n is large, the asymp-
totic distribution of the MLE θ̂ = (δ̂

�
, β̂)� is approximately multivariate normal (of

dimension p+ 1) with mean vector θ = (δ�,β)� and variance covariance matrix K−1(θ)

where

K(θ) = E

[
− ∂� (θ)

∂θ∂θ�

]

is the expected Fisher information matrix. Unfortunately, there is no closed form expres-
sion for the matrix K(θ). Nevertheless, as shown by Lindsay and Li [34], the estimated
observed Fisher information matrix

J(θ̂) = − ∂� (θ)

∂θ ∂θ�
∣∣∣
θ=θ̂

is a consistent estimator of the expected Fisher information matrix K(θ). Therefore, for
large n, we can replace K(θ) by J(θ̂).

Let θr, r = 1, 2, . . . , p + 1, be the rth component of θ . The asymptotic 100(1 − γ )%
confidence interval for θr is given by

θ̂r ± zγ /2 se
(
θ̂r

)
, r = 1, . . . , p + 1,

where zγ /2 is the γ /2 upper quantile of the standard normal distribution and se(θ̂r) is the
asymptotic standard error of θ̂r. Note that se(θ̂r) is the square root of the r-th diagonal
element of the matrix J−1(θ̂).
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3.2. Model adequacy

In order to assess whether the regression model is appropriate, we shall use the Cox–Snell
residuals [10], defined as

ri = − log S(yi | θ̂), i = 1, . . . , n, (13)

where S(· | θ̂) = 1 − F(· | θ̂) is the estimated survival function. The Cox–Snell residuals
have themain property that if the regressionmodel fits the datawell, ri’s follow the standard
exponential distribution. The plot of ri versus − log Ŝ(ri), where Ŝ(ri) is the Kaplan–Meier
estimate of S(ri), should be a straight line with zero intercept and unit slope. For further
details see, for example, Lee and Wang [31, p. 215] or [30].

Hence, to check if the model assumption is adequate we can examine the half-normal
plots with simulated envelope proposed by Atkinson [2]. The simulated envelope can be
constructed as follows:

(i) fit the model and generate sample set of n independent observations using the
estimated parameters of the fitted model;

(ii) fit the model from the generated sample, calculate the absolute values of the residuals
and arrange them in order;

(iii) repeat steps (i) and (ii) B number of times;
(iv) consider the n sets of the B ordered statistics of the residuals, then for each set

calculate the quantile γ /2, the median and the quantile 1 − γ /2;
(v) plot these values and the ordered residuals of the original sample set versus the

expected order statistics of a half-normal distribution, which is approximated as

�−1
(
i + n − 0.125
2n + 0.5

)
.

According to Atkinson [2], if the model was correctly specified then no more than γ ×
100% of the observations are expected to appear outside the envelope bands. Additionally,
if a large proportion of the observations lies outside the envelope, thus one has evidence
against the adequacy of the fitted model. See, for example, [3,8,29] for further details on
half-normal plots.

4. Simulation study

In this section, two simulation studies are conducted to evaluate the finite sample behav-
ior of the maximum likelihood estimates and the asymptotic confidence intervals of the
parameters of the UW quantile regression model. For such evaluation, the estimated bias,
the estimated root-mean squared error (RMSE) and the coverage probability of 95% point-
wise confidence interval (CP95%) were computed. All simulations were conducted in SAS
using the quasi-Newton algorithm available in the NLMIXED procedure [44] to obtain the
maximum likelihood estimates.

(a) The case of one covariate
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Figure 2. Upper panel: estimated bias of δ̂0, δ̂1 and β̂ , respectively. Lower panel: estimated RMSE of δ̂0,
δ̂1 and β̂ , respectively. (1: τ = 0.10, 2: τ = 0.25, 3: τ = 0.50, 4: τ = 0.75 and 5: τ = 0.90.)

The first Monte Carlo experiment is carried out by taking

logit (μi) = δ0 + δ1xi1, i = 1, . . . , n,

where the true values of the parameters δ0 and δ1 were taken as δ0 = 1.0 and δ1 = 2.0.
(b) The case of two covariates
The second Monte Carlo experiment is carried out by taking

logit (μi) = δ0 + δ1xi1 + δ2xi2, i = 1, . . . , n,

where the true values of the parameters δ0, δ1 and δ2 were taken as δ0 = −2.0, δ1 = 1.0
and δ2 = 2.0.

In each of the above two cases, the true value of the shape parameterβ is taken asβ = 4.0
and the quantile values are τ = 0.10, 0.25, 0.50, 0.75and0.90. The covariateswere generated
from the standardNormal distribution forn = 50, 100, 150 and 300 and remained constant
throughout the simulations. For each scenario the Monte Carlo experiment was repeated
M = 10, 000 times.

The results of the simulation experiments are presented in Figures 2 and 3 and Tables 1
and 2. From these figures and tables we can observe that
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Figure 3. Upper panel: estimated bias of δ̂0, δ̂1, δ̂2 and β̂ , respectively. Lower panel: estimated RMSE of
δ̂0, δ̂1, δ̂2 and β̂ , respectively. (1: τ = 0.10, 2: τ = 0.25, 3: τ = 0.50, 4: τ = 0.75 and 5: τ = 0.90.)

Table 1. Estimated coverageprobability for δ0, δ1 andβ .

n = 50 n = 100

τ δ0 δ1 β δ0 δ1 β

0.10 92.86 93.97 94.52 93.89 94.24 94.95
0.25 93.85 93.77 94.54 94.32 94.25 94.96
0.50 94.21 93.49 94.65 94.62 94.17 94.84
0.75 93.65 93.19 94.41 94.41 94.21 94.81
0.90 92.83 93.04 94.19 94.03 93.85 94.58

n = 150 n = 300

τ δ0 δ1 β δ0 δ1 β

0.10 94.39 94.75 94.72 94.72 94.97 94.66
0.25 94.58 94.60 94.65 95.10 94.91 94.71
0.59 94.91 94.28 94.58 95.09 94.90 94.79
0.75 94.39 94.32 94.55 94.91 95.21 94.65
0.90 94.24 94.26 94.39 94.68 95.00 94.68

(i) the highest biases and RMSE of the estimates are presented in the tails of the
distribution, i.e. when τ = 0.1and0.9;

(ii) the bias and RMSE of the estimates decrease as the sample size increases;
(iii) the estimate of β has a high bias for small sample size;
(iv) the coverage probability of the 95% pointwise confidence intervals of the parameters

are quite close to the nominal level.
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Table 2. Estimated coverage probability for δ0, δ1, δ2 and β .

n = 50 n = 100

τ δ0 δ1 δ2 β δ0 δ1 δ2 β

0.10 90.67 92.58 92.81 93.75 93.08 94.06 94.04 94.42
0.25 92.46 92.73 92.77 93.76 93.97 94.00 94.13 94.42
0.50 93.46 92.86 92.67 93.68 94.19 94.12 94.13 94.39
0.75 92.88 92.76 92.41 93.63 93.81 93.70 93.90 94.23
0.90 92.22 92.56 92.37 93.58 93.46 93.42 93.87 94.25

n = 150 n = 300

τ δ0 δ1 δ2 β δ0 δ1 δ2 β

0.10 93.82 94.27 94.28 94.60 94.15 94.93 94.83 94.85
0.25 94.14 94.22 94.31 94.55 94.54 94.91 94.81 94.82
0.50 94.37 94.42 94.34 94.59 94.99 94.75 95.11 94.84
0.75 94.21 94.30 94.29 94.48 94.83 94.75 95.14 94.85
0.90 94.04 94.18 94.31 94.45 94.64 94.65 95.16 94.85

5. Applications

In this section, three real applications were presented in order to show the potentiality of
the proposed regression model. For comparison purpose, in addition to the UW quantile
regression model, we also considered two alternative regression models commonly used
in the analysis of limited data.

In what follows the p.d.f. of the alternative regression models is presented.

• The Beta regression model introduced by Cepeda-Cuervo [7] and Ferrari and Cribari-
Neto [14] has p.d.f. given by

f (y | μ,β) = �(β)

�(μβ)�((1 − μ)β)
yμβ−1(1 − y)(1−μ)β−1, 0 < y < 1,

where 0 < μ < 1 denotes the mean and β > 0 can be interpreted as a precision
parameter.

• The Kumaraswamy regression model introduced by Mitnik and Baek [37] has p.d.f.
given by

f (y | μ,β) = β log(1 − 0.5)
log(1 − μβ)

yβ−1 (1 − yβ)log(1−0.5)/log(1−μβ)−1, 0 < y < 1,

where 0 < μ < 1 denotes the median and β > 0 is the shape parameter.

To discriminate and choose the best among the proposed models, the Akaike (AIC)
[1], Schwarz (BIC) [46] and Hannan–Quinn (HQIC) [22] information criteria were used.
These measures are defined as follows:

AIC = 2p − 2 log L̂, BIC = log(n) p − 2 log L̂, HQIC = 2 p log
(
log n

)− 2 log L̂,

where L̂ is the likelihood evaluated at theMLE, p is the number of parameters in the model
and n is the number of observations. The decision rule, in all these criteria, is favorable
to the model with the lowest value [23]. In order to quantify the uncertainty associated
with these criteria, the non-parametric Bootstrap approach was used to decide on the final
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model. We considered 10,000 independent runs and calculated the percentage of times
each model was selected.

In addition, a formal test based on theVuong likelihood ratio test for non-nestedmodels
[52] was employed to assess whether there is any significant difference in the fit of the two
alternative models to unit-Weibull. The Vuong statistic to compare two regression models
is defined as

TLR,NN = 1
ω̂2√n

n∑
i=1

log
f (yi | xi, θ̂)

g(yi | xi, γ̂ )
,

where

ω̂2 = 1
n

n∑
i=1

(
log

f (yi | xi, θ̂)

g(yi | xi, γ̂ )

)2

−
[
1
n

n∑
i=1

(
log

f (yi | xi, θ̂)

g(yi | xi, γ̂ )

)]2

is an estimator for the variance of (1/
√
n)
∑n

i=1 log (f (yi | xi, θ̂)/g(yi | xi, γ̂ )), f (yi | xi, θ̂)

and g(yi | xi, γ̂ ) are the corresponding rival densities evaluated at the maximum likeli-
hood estimates. It was demonstrated that, when n → ∞ then T D→ N(0, 1). Therefore, at
a significance level of α% distribution equivalence is rejected if |T| < zα/2.

Finally, the maximum likelihood estimates were obtained using the dual quasi-Newton
algorithm available in the SAS/NLMIXED procedure [44]. The asymptotic standard
errors and confidence intervals were computed using the inverse of the observed Fisher
information matrix. The SAS codes are available upon request.

5.1. Recovery rate of CD34+ cells data

In this application, the data correspond to a study conducted with 239 patient between
2003 and 2008 at the Edmonton Hematopoietic Stem Cell Lab in Cross Cancer Institute
– Alberta Health Services. The data set was extracted from [55] and the goal is to model
the recovery rate of CD34+ cells after peripheral blood stem cell (PBSC) transplants. The
covariates associated with this response variable are

• x1 (Gender): 0 for female, 1 for male;
• x2 (Chemotherapy): 0 for receiving chemotherapy on a one-day protocol, 1 for a 3-day

protocol;
• x3 (Age): adjusted patient’s age, i.e. the current age minus 40.

The regression structure assumed for μi is given by

logit(μi) = δ0 + δ1xi1 + δ2xi2 + δ3xi3, i = 1, . . . , 239, (14)

where μi denotes the median in the unit-Weibull and Kumaraswamy models, whereas in
the Beta model μi denotes the mean.

Table 3 gives the maximum likelihood parameter estimates and the 95% pointwise
confidence intervals for all the rival models.

In Table 4 the comparison of the fit of the three proposed models is presented through
the values of the statistics used as selection criteria. The three information criteria evalu-
ated indicate that the unit-Weibull regression model presented a better fit when compared
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Table 3. The maximum likelihood parameter estimates and the 95% pointwise confidence intervals –
recovery rate of CD34+ cells data.

unit-Weibull Kumaraswamy Beta

Parameter MLE 95% C.I. MLE 95% C.I. MLE 95% C.I.

δ0 0.9619 (0.7031, 1.2208) 1.1997 (0.9259, 1.4736) 0.9990 (0.7460, 1.2521)
δ1 0.0174 (0.0075, 0.0273) 0.0107 (−0.0008, 0.0223) 0.0142 (0.0037, 0.0247)
δ2 0.2816 (0.0887, 0.4744) 0.1833 (−0.0421, 0.4088) 0.2116 (0.0083, 0.4150)
δ3 0.1033 (−0.0816, 0.2883) 0.0418 (−0.1454, 0.2290) 0.0659 (−0.1182, 0.2500)
β 1.6802 (1.5174, 1.8430) 6.7274 (5.8371, 7.6178) 11.3447 (9.3494, 13.3401)

Table 4. The likelihood-based statistics of fit – recovery rate of CD34+ cells data.

Criteria unit-Weibull Kumaraswamy Beta

AIC (%)a −388.0932 (44.47%) −375.6599 (23.87%) −381.7912 (31.56%)
BIC (% ) −370.7109 (44.56%) −358.2775 (23.86%) −364.4089 (31.58%)
HQIC (%) −381.0886 (44.49%) −368.6553 (23.90%) −374.7866 (31.61%)
Voung – 1.7117 1.0590
(p-value) (0.0435) (0.1448)
a % of times out of 10,000 non-parametric Bootstrap runs that the model is selected.

Figure 4. The half-normal plot with simulated envelope for the Cox–Snell residuals – recovery rate of
CD34+ cells data.

to the competing models for the recovery rate of CD34+ data. This conclusion is rein-
forced by the percentage of times that each model was selected. Considering a level of 5%
of significance, the results of the Vuong test indicate that there is insufficient sample evi-
dence that the Beta and unit-Weibull models differ significantly, and the unit-Weibull fit
was shown superior to all the others.

In order to assess if the model is appropriate, in Figure 4 it is shown the half-normal
plots with simulated envelopes for the Cox–Snell residuals. Figure 4 indicates a good fit of
the unit-Weibull regression model to the recovery rate of CD34+ cells data.

The impact of different τ ’s on the estimates of β and δi, i = 0, . . . , 3, is illustrated in
Figure 5.
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Figure 5. The parameter estimates and the 95% pointwise confidence intervals for the UWmodel and
τ = 0.1, 0.2, . . . , 0.8 and 0.9 – recovery rate of CD34+ cells data.

5.2. Access to pipedwater supply data

In this application, we consider the data set related to the access of people in households
with pipedwater supply in the cities of Brazil from the Southeast andNortheast regions.We
are interested in analyzing the association between proportion of households with piped
water supply and some socio-demographic variables of these cities. The data are available
from http://atlasbrasil.org.br/2013/ and represent 3457 cities during the census in 2010.
The response variable y (Phpws) is the proportion of households with piped water supply.
The covariates associated with this response variable are

• x1 (HDI): human development index;
• x2 (Region): 0 for Southeast, 1 for Northeast;
• x3 (Incpc): income per capita;
• x4 (Pop): total population.

The regression structure assumed for μi is given by

logit(μi) = δ0 + δ1xi1 + δ2xi2 + δ3xi3 + δ4 log (xi4) , i = 1, . . . , 3457. (15)

The point estimates and the 95% pointwise confidence intervals for the parameters of the
considered three regression models are given in Table 5. Table 6 gives the values of the

http://atlasbrasil.org.br/2013/
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Table 5. The maximum likelihood parameter estimates and the 95% pointwise confidence intervals –
access to piped water supply data.

unit-Weibull Kumaraswamy Beta

Parameter MLE 95% C.I. MLE 95% C.I. MLE 95% C.I.

δ0 −6.5145 (−7.1556,−5.8733) −1.6259 (−2.2572,−0.9947) −3.8943 (−4.4598,−3.3289)
δ1 11.8262 (10.7368, 12.9155) 4.8432 (3.6989, 5.9874) 8.3186 (7.3339, 9.3034)
δ2 −0.2699 (−0.3668,−0.1730) −0.0786 (−0.1815, 0.0243) −0.1940 (−0.2774,−0.1106)
δ3 0.0003 (−0.0001, 0.0006) 0.0021 (0.0016, 0.0026) 0.0005 (0.0001, 0.0008)
δ4 0.1055 (0.0751, 0.1358) −0.0473 (−0.0803,−0.0143) 0.0157 (−0.0122, 0.0436)
β 1.1883 (1.1604, 1.2161) 5.7996 (5.5631, 6.0360) 9.5884 (9.1243, 10.0525)

Table 6. The likelihood-based statistics – access to piped water supply.

Criteria unit-Weibull Kumaraswamy Beta

AIC (%)a −7982.0762 (90.78%) −7176.4979 (0.00%) −7660.1747 (9.22%)
BIC (%) −7945.1872 (90.78%) −7139.6089 (0.00%) −7623.2858 (9.22%)
HQIC (%) −7968.9027 (90.72%) −7163.3244 (0.00%) −7647.0012 (9.28%)
Vuong – 7.2248 3.0340
(p-value) (0.0000) (0.0012)
a % of times out of 10,000 non-parametric Bootstrap runs that the model is selected.

Figure 6. The half-normal plot with simulated envelope for the Cox–Snell residuals – access to piped
water supply data.

likelihood-based statistics and the Vuong test of equivalence of the considered models.
This table shows that the unit-Weibull regression model provides the best fit, since it has
the lowest values of AIC, BIC and HQIC statistics. Moreover, the Vuong test shows that
the unit-Weibull regression model is not equivalent to either the Kumaraswamy or the
Beta regression models. These conclusions are also supported by the half-normal plots for
the Cox–Snell residuals with simulated envelopes exhibited in Figure 6.

The results obtained from the unit-Weibull regression model indicate that only the
covariate x3 (Incpc) is not statistically significant to explain the response variable, since
the confidence interval for δ3 includes the zero value. It is also noted that there is a posi-
tive relationship between themedian response (proportion of households with piped water
supply) and the human development index of the city and the logarithm of the total pop-
ulation. This means that cities with greater values of HDI and/or total population tend to
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Figure 7. Parameter estimates and its 95%pointwise confidence intervals for theUWmodel considering
τ = 0.1, 0.2, . . . , 0.9 – access to piped water supply.

have more proportion of households with piped water supply. On the other hand, it was
observed that the cities localized in the Northeast region have less proportion of house-
holds with piped water supply than the cities in the Southeast. It is natural to expect that
the shape parameter (β) will not be influenced by the percentile unless it is dependent on
the covariates.

Figure 7 displays the maximum likelihood estimates and the 95% pointwise confidence
interval for the parameters of the UW regression model considering different values for
the quantiles. It is observed that the quantile regression could be more interesting than the
conditional mean regression because it allows a complete view of the condition distribu-
tion by studying the effect of explanatory variables on the response in distinct quantiles.
For instance, a close inspection in Figure 7 reveals that as τ increases the estimates of
δ1 become smaller, indicating that the human development is more important to explain
smaller quantiles of the response variable.

5.3. Riskmanagement cost effectiveness data

The data set considered is presented by Schmit and Roth [45], and corresponds to the 73
responses to a questionnaire sent to 374 risk managers of large North American organi-
zations. The objective of Schmit and Roth [45] was to evaluate the cost effectiveness with
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Table 7. The maximum likelihood parameter estimates and the 95% pointwise confidence intervals –
risk management cost effectiveness data.

unit-Weibull Kumaraswamy Beta

Parameter MLE 95% C.I. MLE 95% C.I. MLE 95% C.I.

δ0 3.4712 (1.2889, 5.6535) 2.5387 (−0.4998, 5.5773) 1.8880 (−0.4096, 4.1855)
δ1 −0.0076 (−0.0332, 0.0179) −0.0364 (−0.0709,−0.0019) −0.0121 (−0.0394, 0.0151)
δ2 0.1278 (−0.3635, 0.6190) 0.5964 (−0.1686, 1.3615) 0.1780 (−0.2763, 0.6322)
δ3 −0.8043 (−1.0451,−0.5635) −0.7981 (−1.1143,−0.4820) −0.5115 (−0.7524,−0.2705)
δ4 1.4394 (0.6353, 2.2435) 5.2568 (2.4429, 8.0707) 1.2362 (0.3359, 2.1366)
δ5 −0.0241 (−0.1913, 0.1430) −0.0278 (−0.2621, 0.2065) −0.0122 (−0.1836, 0.1593)
δ6 −0.0023 (−0.0454, 0.0408) −0.0274 (−0.0902, 0.0354) −0.0037 (−0.0455, 0.0380)
β 3.3533 (2.7278, 3.9787) 0.9784 (0.7709, 1.1860) 6.3305 (4.1300, 8.5311)

Table 8. The likelihood-based statistics of fit – risk management cost effectiveness data.

Criteria unit-Weibull Kumaraswamy Beta

AIC (%)a −206.2227 (47.33%) −181.6534 (34.22%) −159.4460 (18.45%)
BIC (%) −187.8990 (47.34%) −163.3297 (34.22%) −141.1223 (18.44%)
HQIC (%) −198.9204 (47.32%) −174.3511 (34.23%) −152.1437 (18.45%)
Vuong – 2.1513 4.5817
(p-value) (0.0157) (0.0000)
a % of times out of 10,000 non-parametric Bootstrap runs that the model is selected.

the management philosophy of controlling the company’s exposure to various property
losses and accidents, taking into account company characteristics such as size and type of
industry.

The response variable y (Firm cost) is the firm-specific ratio of premiums plus uninsured
losses divided by total assets. The covariates associated with this response variable are

• x1 (Assume): firm-specific ratio of the summation of per occurrence retention levels, as
measured by the corporate risk manager;

• x2 (Cap): 1 if the firm uses a captive and 0 otherwise;
• x3 (Sizelog): log of the firm’s total asset value;
• x4 (Indcost): industry average of premiums plus uninsured losses divided by total assets,

as measured by the 1985 Cost of Risk Survey (a measure of risk);
• x5 (Central): importance of local manager in choosing local retention levels, as mea-

sured by the corporate risk manager;
• x6 (Soph): importance of analytical tools in making risk management decisions, as

measured by the corporate risk manager.

The regression structure assumed for μi is given by

logit(μi) = δ0 + δ1xi1 + δ2xi2 + δ3xi3 + δ4xi4 + δ5xi5 + δ6xi6, i = 1, . . . , 73. (16)

The point estimates and the 95% pointwise confidence intervals for the parameters of the
considered three regression models are given in Table 7. Table 8 gives the values of the
likelihood-based statistics and the Vuong test of equivalence of the considered models.
This table shows that the unit-Weibull regression model provide the best fit, since it has
the lowest values of AIC, BIC and HQIC statistics. Moreover, the Vuong test shows that
the unit-Weibull regression model is not equivalent to either the Kumaraswamy or the
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Figure 8. The half-normal plot with simulated envelope for the Cox–Snell residuals – risk management
cost effectiveness data.

Beta regression models. These conclusions are also supported by the half-normal plots for
the Cox–Snell residuals with simulated envelopes shown in Figure 8.

From the inference results obtained for the UW regression model it can be inferred that
the covariates x3 (Size) and x4 (Indcost) are statistically significant at the usual nominal lev-
els. Additionally, it is noteworthy that there is a negative relationship between the median
response, that is, the measure of the firm’s risk management cost effectiveness, and the log
of the firm’s total asset value. On the other hand, themeasure of risk (Indcost) has a positive
impact on the median response.

Finally, we present in Figure 9 the parameter estimates and its 95% confidence interval
of the UW regression model assuming different values for the quantiles. It can be seen that
as τ increases the coefficient of firm’s total asset value (δ3) becomes bigger. In contrast, for
the Indcost covariate it is observed that as τ increases the estimates of δ4 becomes smaller.

As a final comment on the applications, we can observe that the estimates of the median
regression coefficients are clearly affected by the choice of the distribution of the response
variable, unit-Weibull or Kumaraswamy. As pointed out by a reviewer, in application 2
one estimated coefficient, δ4, change of sign and the confidence intervals do not overlap.
In the unit-Weibull distribution, we have a positive effect of log(x4) on the median of the
response variable distributionwhile this effect is negative if the Kumaraswamy distribution
is adopted. This fact emphasizes the need to consider different distributions in the analysis
of real data and to decide on the distribution with better goodness of fit. As mentioned
in [42]

Goodness of fit is concerned with assessing the validity of models involving statistical distri-
butions, an essential and sometimes forgotten aspect of the modeling exercise. One can only
speculate on how many wrong decisions are made due to the use of an incorrect model

In our applications, we have strong evidence that the proposed distribution is more
appropriate.With respect to signal change in application 2, the percentage of times that the
Kumaraswamy distribution was chosen in 10,000 replications was equal to zero. From the
same simulation study, for the unit-Weibull and Kumaraswamy distribution, we observed
only 1 out of 10,000 change in the sign of coefficient associated to log(x4).
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Figure 9. Parameter estimates and its 95%pointwise confidence intervals for theUWmodel considering
τ = 0.1, 0.2, . . . , 0.9 – risk management cost effectiveness data.

6. Conclusions

As pointed out by Noufaily [40] and Noufaily and Jones [39], most of the literature con-
cerning quantile regression models has involved non-parametric components either in
the functional form of the regression equation or the distribution of the random com-
ponent (or both). In this context, parametric distributions for the response variable were
rarely used. To explore a fully parametric approach for quantile regression, these authors
have considered the Generalized Gamma distribution for the response variable. For a vari-
able on the unit interval, Mitnik and Baek [37] and Bayes et al. [5] have considered the
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Kumaraswamy distribution. In the paper herein, the unit-Weibull distribution was consid-
ered as an alternative to the Kumaraswamy distribution. For this purpose, the proposed
model was reparameterized in terms of its quantiles. A Monte Carlo simulation study was
performed and has shown that the parameters were well estimated in terms of the bias and
mean-squared error of their respective estimators. Three real datasets were analyzed for
illustrative and model comparison purposes. For these datasets, the unit-Weibull quan-
tile regression model has outperformed the Kumaraswamy and Beta models according to
three information criteria and the half-normal plots for the Cox–Snell residuals. Although
the presented formulation looks like a simple algebraic exercise, the proposed model has
proved to be useful, simple to implement and that can be straightforwardly extended to
accommodate observations existing at zero, one or both.
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