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Abstract

It is well known that the maximum likelihood estimates (MLEs) have appealing sta-
tistical properties. Under fairly mild conditions their asymptotic distribution is normal,
and no other estimator has a smaller asymptotic variance. However, in finite samples the
maximum likelihood estimates are often biased estimates and the bias disappears as the
sample size grows. Mazucheli, Menezes, and Ghitany (2018b) introduced a two-parameter
unit-Weibull distribution which is useful for modeling data on the unit interval, however
its MLEs are biased in finite samples. In this paper, we adopt three approaches for bias
reduction of the MLEs of the parameters of unit-Weibull distribution. The first approach
is the analytical methodology suggested by Cox and Snell (1968), the second is based on
parametric bootstrap resampling method, and the third is the preventive approach intro-
duced by Firth (1993). The results from Monte Carlo simulations revealed that the biases
of the estimates should not be ignored and the bias reduction approaches are equally
efficient. However, the first approach is easier to implement. Finally, applications to two
real data sets are presented for illustrative purposes.

Keywords: unit-Weibull distribution, bias-correction, bootstrap, Monte Carlo simulation.

1. Introduction

Recently, Mazucheli et al. (2018b) proposed a new two-parameter probability distribution for
data analysis on the unit interval (0, 1). This new proposal arose from a transformation of a
two-parameter Weibull random variable and was named the unit-Weibull (UW) distribution.
Specifically, the UW distribution was obtained by applying the transformation X = e−Y ,
where Y follows a Weibull distribution with scale parameter α and shape parameter β. The
authors discussed important properties of UW distribution and in two applications showed
that it outperforms 8 well-known competing distributions on the unit interval, including
the Beta and Kumaraswamy distributions. More recently, Mazucheli, Menezes, Fernandes,
de Oliveira, and Ghitany (2019b) introduced an alternative quantile regression model by
using the unit-Weibull distribution. The proposed model has proved to be very useful in real
applications.

The probability density function (p.d.f.) and cumulative distribution function (c.d.f.) of the
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UW distribution, respectively, are expressed as

f(x | α, β) =
1

x
αβ (− log x)β−1 exp

[
−α (− log x)β

]
(1)

and
F (x | α, β) = exp

[
−α (− log x)β

]
(2)

where 0 < x < 1 and α, β > 0. Note that α is no longer a scale parameter, since f(αx |
α, β) 6= 1

αf(x | 1, β). Mazucheli et al. (2018b) showed that UW distribution includes three
special cases: the standard uniform distribution (α = β = 1), the power function distribution
(β = 1) and the unit-Rayleigh distribution (β = 2).

Figure 1 shows some possible shapes of the p.d.f. for selected values of the parameters α and
β. Note that the p.d.f. may assume different forms according to the values of its parameters:
symmetrical unimodal; asymmetric unimodal on the left; asymmetric unimodal on the right;
bathtub shape; increasing exponential; decreasing and constant exponential. This flexibility in
its shape makes UW distribution a flexible alternative for analyzing data on the unit interval.
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Figure 1: Probability density function of the UW distribution for selected values of α and β

From the point of view of parametric inference, the parameters estimation is the utmost
importance for any probability distribution under consideration. Among all estimation meth-
ods, surely the maximum likelihood method (Pawitan 2001; Millar 2011) enjoys great pop-
ularity in practice because (i) its underlying motivation is simple and intuitive, (ii) it has
several attractive properties, for instance they are asymptomatically unbiased, consistent and
asymptotically normally distributed (Edwards 1992; Lehmann 1999) and (iii) it is possible to
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measure the accuracy of point estimation. The majority of these properties are not shared
with other parameter estimation methods.

Nonetheless, the most cited properties of the maximum likelihood method essentially rely on
the large sample size condition. In particular, the maximum likelihood estimators have biases
of order O(n−1), which are commonly ignored in practice. As demonstrated by Mazucheli
et al. (2018b) the maximum likelihood estimators of the parameters associated to the UW
distribution are positively biased in small sample (n = 10, 20, 30, 40 and 50), this means that
the expected value of estimators exceeds the true value of parameters, that is, the MLE α̂
and β̂ overestimate α and β, respectively. Taking this into account, it is important to develop
nearly unbiased estimators for the UW distribution, as considered for the Beta distribution
in Cribari-Neto and Vasconcellos (2002).

In this paper, we shall adopt three corrective approaches to derive modified MLEs that are
unbiased to second order: (i) the bias-correction method introduced by Cox and Snell (1968),
with analytical expressions for the biases, (ii) the parametric bootstrap resampling method
by (Efron 1982) and (iii) the preventive approach introduced by Firth (1993).

As can be seen in our simulation study, the proposed three corrected MLEs are extremely
accurate for small and moderate sample sizes. Furthermore, they are far superior than the
uncorrected MLEs with respect to consistency and efficiency. Additionally, the first two meth-
ods have closed-form expressions, which means they are quite attractive and easy to compute.
Bias-corrections of the MLEs of the parameters of many distributions have been applied suc-
cessfully in the literature. Interested readers may refer to Cribari-Neto and Vasconcellos
(2002), Saha and Paul (2005), Lemonte, Cribari-Neto, and Vasconcellos (2007), Giles (2012),
Schwartz, Godwin, and Giles (2013), Giles, Feng, and Godwin (2013), Ling and Giles (2014),
Schwartz and Giles (2016), Wang and Wang (2017), Mazucheli, Menezes, and Dey (2018a),
Mazucheli, Menezes, and Nadarajah (2017), Mazucheli and Dey (2018), Mazucheli, Menezes,
and Dey (2019a), Menezes and Mazucheli (2018), Reath, Dong, and Wang (2018) and the
references therein.

The rest of the paper is organized as follows. In Sections 2 and 3 we described the maximum
likelihood estimators and derived their bias-corrected estimators for the parameters of the
UW distribution. The performance of the bias adjusted estimators are investigated by Monte
Carlo simulation in Section 4. Real applications in Section 5 are given for illustrative purposes.
Finally, some remarks in Section 6 closes the paper.

2. Maximum likelihood estimation

Let x = (x1, . . . , xn) be a random sample of size n from the UW distribution with p.d.f. (1).
Then, the log-likelihood function of θ = (θ1, θ2) = (α, β) is given by

` = `(θ | x) = n(logα+ log β)−
n∑
i=1

log xi + (β − 1)
n∑
i=1

log (− log xi)− α
n∑
i=1

(− log xi)
β. (3)

The maximum likelihood estimate θ̂ of θ is obtained by solving the non-linear equations

∂`

∂α
=
n

α
−

n∑
i=1

(− log xi)
β = 0, (4)

∂`

∂β
=
n

β
+

n∑
i=1

log (− log xi)− α
n∑
i=1

(− log xi)
β log (− log xi) = 0. (5)

The equation (4) can be solved algebraically for α, giving α̂(β) =
n

n∑
i=1

(− log xi)
β

.
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To obtain β̂, we substitute α̂(β) into (5) and solve for β. We have

g(β) =
n

β
+

n∑
i=1

log (− log xi)−
n

n∑
i=1

(− log xi)
β log (− log xi)

n∑
i=1

(− log xi)
β

= 0. (6)

Mazucheli et al. (2018b) proposed a starting-point strategy using the fact that UW cumulative
distribution function can be linearized. As a result, one can obtain least squares estimates
of α and β by fitting a linear regression line, which can be used as initial guess to solve
numerically equation (6).

From Mazucheli et al. (2018b), the expected Fisher information matrix is given by

I(θ) = [Iij(θ)] = E
[
− ∂2

∂θi ∂θj
`(θ | x)

]
, i, j = 1, 2,

where

I11(θ) =
n

α2
,

I12(θ) = I21(θ) =
n

αβ
[1− γ − log(α)] ,

I22(θ) =
n

6β2
[
6 (1− γ − logα)2 + π2

]
,

where γ ≈ 0.577215 is the Euler’s constant. Its inverse, I−1(θ) =
[
Iij(θ)

]
, i, j = 1, 2, has the

elements

I11(θ) =
α2

nπ2
[
6 (1− γ − logα)2 + π2

]
,

I12(θ) = I21(θ) = − 6αβ

nπ2
(1− γ − logα),

I22(θ) =
6β2

nπ2
.

Note that I−1(θ̂) is the estimated variance-covariance matrix of the MLE θ̂ of θ.

3. Bias-corrected maximum likelihood estimators

Maximum likelihood estimators are usually biased, typically they have biases of order O(n−1).
For this reason, we use the following three methods to reduce the bias of the MLEs.

(i) Cox-Snell method

For a p-dimensional parameter vector θ = (θ1, θ2, . . . , θp), Cox and Snell (1968) showed that
when the sample data are independent, but not necessarily identically distributed, the bias
of the r-th MLE θ̂r of θr, is obtained as

Bias
(
θ̂r

)
=

p∑
i=1

p∑
j=1

p∑
k=1

Iri(θ) Ijk(θ) [0.5 Iijk(θ) + Iij,k(θ)] +O(n−2), r = 1, . . . , p, (7)

where Iij(θ) is the (i, j)-th element of the inverse expected information matrix I−1(θ),

Iijk(θ) = E
[

∂3

∂ θi ∂ θj ∂ θk
`(θ | x)

]
,
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and

Iij,k(θ) = E
[

∂2

∂ θi ∂ θj
`(θ | x)

∂

∂ θk
`(θ | x)

]
.

Therefore, the bias corrected estimator (BCE) θ̂r(BCE) of the MLE θ̂r is given by

θ̂r(BCE) = θ̂r − B̂ias(θ̂r), r = 1, . . . , p. (8)

where B̂ias(θ̂r) is the bias of θ̂r evaluated at the MLE θ̂. Clearly, we would expect that the
BCEs will have better sampling properties than the uncorrected MLEs. For example, it is
expected that the standard errors of BCEs to be smaller than that of the MLEs.

For the UW distribution, we have

I111(θ) =
2n

α3
,

I112(θ) = I121(θ) = I211(θ) = 0,

I122(θ) = I212(θ) = I221(θ) = − n

αβ2

[
(1− γ − logα)2 +

π2

6
− 1
]
,

I222(θ) =
n

β3

[
(logα)3 + 3(γ − 1) (logα)2 +

(
3γ2 − 6γ +

π2

2

)
log(α)

+γ3 − 3 γ2 +
π2

2
γ − π2

2
+ 2 ζ(3) + 2

]
.

where ζ(s) =

∞∑
n=1

1

ns
is the Riemann’s Zeta function.

Also, we have

I11,1(θ) = I11,2 = 0,

I12,1(θ) = I21,1(θ) = − n

α2 β
[log(α) + γ − 2] ,

I12,2(θ) = I21,2(θ) =
n

αβ2

[
(logα)2 + (2 γ − 3) log(α) + γ2 − 3 γ +

π2

6
+ 1

]
,

I22,1(θ) =
n

αβ2

[
(logα)2 + 2(γ − 2) log(α) + γ2 − 4 γ +

π2

6
+ 2

]
,

I22,2(θ) = − n

β3

[
(logα)3 + (3γ − 5) (logα)2 +

(
3γ2 − 10γ +

π2

2
+ 4

)
log(α)

+γ3 − 5 γ2 +

(
π2

2
+ 4

)
γ − 5

6
π2 + 2ζ(3)

]
.

By replacing these terms in Equation (7), we obtain the second order biases of α̂ and β̂,
respectively, as follows

Bias (α̂) =
0.303963548

n
α [log(α) + 2.948557322] [log(α) + 0.7443481081], (9)

Bias
(
β̂
)

= − 0.11× 10−8

n
β [log(α) + 35414.40358] [log(α)− 35412.67631]. (10)

Note that B̂ias (α̂) depends only on the MLE α̂ while B̂ias
(
β̂
)

depends on both the MLEs

α̂ and β̂. It is important to mention that the validity of the expressions (9) and (10) can be
verified numerically through the the coxsnell.bc function, available in the mle.tools library
(Mazucheli et al. 2017) of the R environment of the R environment (R Core Team 2017).
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(ii) Parametric bootstrap method

A different approach to derive second-order bias-corrected estimators is based on the para-
metric bootstrap resampling scheme (Efron 1982; Davison and Hinkley 1997). The method
is as follows. Let X1, X2, . . . , Xn be a random sample from a distribtion with p.d.f. f(x;θ),
where θ = (θ1, θ2, . . . , θp). Based on this random sample, we compute the MLE θ̂ of θ. Now,
we generate B independent random samples, called parametric bootstrap samples, from the
distribution with p.d.f. f(x; θ̂). The estimated bias of the MLE θ̂r is given by

B̂ias(θ̂r) =
1

B

B∑
j=1

θ̂r(j) − θ̂r, r = 1, . . . , p, (11)

where θ̂r(j) is the MLE of θr obtained from the j-th bootstrap sample. Therefore, the para-

metric bootstrap estimator (PBE) θ̂r(PBE) of the MLE of θ̂r is given by

θ̂r(PBE) = 2 θ̂r −
1

B

B∑
j=1

θ̂r(j), r = 1, . . . , p. (12)

The parametric bootstrap method is described in detail by Efron and Tibshirani (1993).

(iii) Firth method

An alternative approach to obtain bias-corrected estimators proposed by Firth (1993) con-

sists of transforming the score vector U(θ) =
∂ `

∂ θ
before obtaining the maximum likelihood

estimators. This method is known as the preventive method. The modified score vector is
defined by

U∗(θ) = U(θ)− I(θ)B(θ̂) (13)

where I(θ) is the expected information matrix and B(θ̂) is the second-order bias vector with
the components defined in (9) and (10).

4. Simulation study

The aim of the following simulation study is to evaluate the performance of the various
estimators (MLEs, BCEs, PBEs and FBEs) of the parameters of the UW distribution. To do
so, we generated data from the UW distribution by taking X = e−Y , where Y ∼Weibull(α, β).
The generated samples are of sizes n = 10, 20, 30, 40, 50, from the UW distribution with
parameters α, β = 0.5, 1.0, 1.5, 2.0. The number of Monte Carlo samples is M = 10, 000 and
the number of bootstrap replications is B = 1, 000. The Monte Carlo study is performed in
Ox Console (Doornik 2007), the MaxBFGS function was used to obtain the maximum likelihood
estimates and the SolveNLE to obtain the Firth bias corrected estimates.

To evaluate the accuracy of the parameter estimates, the bias and root mean-squared error
of the estimates are reported in Tables 1–4. From these it is possible to conclude that the
BCEs, PBEs and FBEs have smaller absolute biases and smaller root mean-squared errors
than those of the MLEs, particularly for small and moderate sample sizes.
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Table 1: Estimated bias (root mean-squared error) for α and β, (β = 0.5)
Estimator of α Estimator of β

α n MLE BCE PBE FBE MLE BCE PBE FBE

0.5

10 0.015 (0.246) 0.005 (0.219) -0.007 (0.208) 0.017 (0.211) 0.083 (0.191) 0.003 (0.148) -0.015 (0.145) -0.026 (0.134)

20 0.004 (0.153) 0.002 (0.147) -0.000 (0.146) 0.005 (0.146) 0.037 (0.108) -0.000 (0.094) -0.004 (0.094) -0.006 (0.093)

30 0.003 (0.123) 0.001 (0.120) 0.000 (0.120) 0.002 (0.120) 0.024 (0.082) -0.000 (0.075) -0.002 (0.075) -0.003 (0.074)

40 0.002 (0.106) 0.001 (0.104) 0.000 (0.104) 0.002 (0.104) 0.018 (0.069) -0.000 (0.064) -0.001 (0.064) -0.002 (0.064)

50 0.001 (0.095) 0.000 (0.093) 0.000 (0.093) 0.001 (0.093) 0.014 (0.060) 0.000 (0.057) -0.000 (0.057) -0.001 (0.057)

1.0

10 0.102 (0.501) -0.001 (0.363) -0.050 (0.368) -0.001 (0.364) 0.086 (0.200) 0.005 (0.156) -0.012 (0.151) -0.015 (0.146)

20 0.039 (0.272) -0.001 (0.242) -0.011 (0.236) 0.000 (0.244) 0.039 (0.111) 0.002 (0.097) -0.002 (0.097) -0.005 (0.094)

30 0.025 (0.208) 0.000 (0.194) -0.004 (0.192) 0.001 (0.198) 0.025 (0.084) 0.001 (0.076) -0.001 (0.076) -0.002 (0.075)

40 0.017 (0.178) -0.001 (0.168) -0.003 (0.168) 0.001 (0.170) 0.019 (0.071) 0.001 (0.066) 0.001 (0.065) -0.002 (0.064)

50 0.013 (0.156) -0.001 (0.150) -0.002 (0.149) 0.000 (0.152) 0.015 (0.062) 0.001 (0.058) 0.001 (0.058) -0.002 (0.056)

1.5

10 0.284 (0.897) -0.005 (0.533) -0.070 (0.688) -0.024 (0.540) 0.085 (0.192) 0.004 (0.148) -0.009 (0.150) -0.016 (0.146)

20 0.110 (0.454) 0.002 (0.374) -0.023 (0.365) -0.002 (0.368) 0.039 (0.109) 0.001 (0.095) -0.002 (0.094) -0.004 (0.096)

30 0.069 (0.329) 0.003 (0.292) -0.007 (0.287) -0.002 (0.288) 0.025 (0.083) 0.001 (0.076) -0.000 (0.076) -0.002 (0.076)

40 0.048 (0.267) -0.000 (0.245) -0.005 (0.243) -0.001 (0.245) 0.019 (0.069) 0.001 (0.064) 0.000 (0.064) -0.001 (0.065)

50 0.037 (0.231) -0.001 (0.216) -0.004 (0.215) 0.001 (0.218) 0.015 (0.060) 0.001 (0.057) 0.000 (0.057) -0.001 (0.057)

2.0

10 0.464 (1.238) -0.064 (0.653) -0.047 (1.077) -0.060 (0.698) 0.082 (0.190) 0.002 (0.147) -0.002 (0.157) -0.017 (0.141)

20 0.206 (0.668) 0.004 (0.515) -0.036 (0.537) 0.002 (0.533) 0.039 (0.110) 0.002 (0.096) -0.001 (0.097) -0.003 (0.095)

30 0.127 (0.474) 0.004 (0.403) -0.016 (0.397) 0.003 (0.410) 0.025 (0.084) 0.001 (0.076) -0.001 (0.076) -0.002 (0.076)

40 0.091 (0.389) 0.002 (0.346) -0.008 (0.342) 0.004 (0.347) 0.018 (0.069) -0.000 (0.064) -0.001 (0.064) -0.001 (0.064)

50 0.071 (0.334) 0.002 (0.304) -0.005 (0.302) 0.003 (0.306) 0.014 (0.060) -0.000 (0.057) -0.001 (0.057) -0.001 (0.057)

Table 2: Estimated bias (root mean-squared error) for α and β, (β = 1.0)
Estimator of α Estimator of β

α n MLE BCE PBE FBE MLE BCE PBE FBE

0.5

10 0.015 (0.246) 0.005 (0.219) -0.006 (0.209) 0.018 (0.211) 0.167 (0.381) 0.006 (0.296) -0.030 (0.289) -0.053 (0.269)

20 0.004 (0.153) 0.002 (0.147) -0.000 (0.146) 0.005 (0.146) 0.073 (0.215) -0.001 (0.189) -0.008 (0.188) -0.012 (0.185)

30 0.003 (0.123) 0.001 (0.120) 0.000 (0.120) 0.002 (0.120) 0.048 (0.164) -0.001 (0.150) -0.004 (0.150) -0.005 (0.149)

40 0.002 (0.106) 0.001 (0.104) 0.000 (0.104) 0.002 (0.104) 0.035 (0.138) -0.000 (0.129) -0.002 (0.129) -0.003 (0.128)

50 0.001 (0.095) 0.000 (0.093) 0.000 (0.093) 0.001 (0.093) 0.029 (0.121) 0.000 (0.114) -0.001 (0.114) -0.001 (0.114)

1.0

10 0.107 (0.493) 0.004 (0.361) -0.046 (0.357) -0.001 (0.364) 0.168 (0.386) 0.007 (0.300) -0.028 (0.293) -0.030 (0.291)

20 0.041 (0.270) 0.001 (0.240) -0.008 (0.235) 0.000 (0.244) 0.078 (0.219) 0.004 (0.191) -0.004 (0.190) -0.009 (0.188)

30 0.027 (0.210) 0.002 (0.195) -0.002 (0.194) 0.001 (0.198) 0.051 (0.167) 0.002 (0.151) -0.001 (0.151) -0.004 (0.151)

40 0.019 (0.176) 0.001 (0.167) -0.001 (0.166) 0.001 (0.170) 0.037 (0.138) 0.001 (0.129) -0.000 (0.129) -0.004 (0.128)

50 0.016 (0.157) 0.002 (0.150) 0.001 (0.150) 0.000 (0.152) 0.029 (0.120) 0.001 (0.113) -0.000 (0.113) -0.003 (0.113)

1.5

10 0.273 (0.881) -0.012 (0.527) -0.072 (0.710) -0.024 (0.540) 0.167 (0.388) 0.006 (0.302) -0.020 (0.305) -0.031 (0.291)

20 0.116 (0.456) 0.007 (0.374) -0.018 (0.366) -0.002 (0.368) 0.075 (0.220) 0.001 (0.192) -0.006 (0.191) -0.008 (0.191)

30 0.073 (0.334) 0.006 (0.295) -0.004 (0.290) -0.002 (0.288) 0.049 (0.165) 0.001 (0.151) -0.003 (0.150) -0.004 (0.151)

40 0.051 (0.269) 0.002 (0.246) -0.003 (0.244) -0.001 (0.245) 0.036 (0.139) 0.000 (0.129) -0.001 (0.129) -0.002 (0.130)

50 0.040 (0.233) 0.002 (0.217) -0.001 (0.216) 0.001 (0.218) 0.029 (0.121) 0.000 (0.114) -0.001 (0.114) -0.002 (0.115)

2.0

10 0.470 (1.271) -0.062 (0.665) -0.052 (1.065) -0.060 (0.699) 0.163 (0.370) 0.002 (0.287) -0.007 (0.306) -0.034 (0.282)

20 0.205 (0.670) 0.003 (0.517) -0.037 (0.540) 0.002 (0.533) 0.076 (0.218) 0.002 (0.190) -0.004 (0.191) -0.006 (0.190)

30 0.125 (0.467) 0.003 (0.398) -0.017 (0.390) 0.003 (0.410) 0.049 (0.165) 0.000 (0.150) -0.003 (0.150) -0.003 (0.151)

40 0.090 (0.380) 0.001 (0.338) -0.009 (0.334) 0.004 (0.347) 0.035 (0.137) -0.000 (0.128) -0.002 (0.128) -0.003 (0.128)

50 0.068 (0.324) -0.001 (0.296) -0.007 (0.294) 0.003 (0.306) 0.027 (0.120) -0.001 (0.114) -0.002 (0.114) -0.002 (0.115)

Table 3: Estimated bias (root mean-squared error) for α and β, (β = 1.5)
Estimator of α Estimator of β

α n MLE BCE PBE FBE MLE BCE PBE FBE

0.5

10 0.015 (0.246) 0.005 (0.219) -0.006 (0.209) 0.018 (0.211) 0.250 (0.572) 0.009 (0.444) -0.045 (0.436) -0.079 (0.403)

20 0.004 (0.153) 0.002 (0.147) -0.000 (0.146) 0.005 (0.146) 0.110 (0.323) -0.001 (0.283) -0.013 (0.281) -0.018 (0.278)

30 0.003 (0.123) 0.001 (0.120) 0.000 (0.120) 0.002 (0.120) 0.071 (0.246) -0.001 (0.225) -0.006 (0.225) -0.008 (0.223)

40 0.002 (0.106) 0.001 (0.104) 0.000 (0.104) 0.002 (0.104) 0.053 (0.207) -0.001 (0.193) -0.003 (0.193) -0.005 (0.192)

50 0.001 (0.095) 0.000 (0.093) 0.000 (0.093) 0.001 (0.093) 0.043 (0.181) 0.000 (0.171) -0.001 (0.171) -0.002 (0.171)

1.0

10 0.108 (0.504) 0.004 (0.366) -0.045 (0.371) -0.001 (0.364) 0.253 (0.583) 0.011 (0.453) -0.040 (0.446) -0.045 (0.436)

20 0.041 (0.271) 0.001 (0.241) -0.009 (0.235) 0.000 (0.244) 0.117 (0.328) 0.005 (0.285) -0.006 (0.284) -0.014 (0.283)

30 0.026 (0.210) 0.001 (0.195) -0.003 (0.193) 0.001 (0.198) 0.076 (0.249) 0.003 (0.226) -0.001 (0.226) -0.006 (0.226)

40 0.019 (0.176) 0.001 (0.167) -0.001 (0.166) 0.001 (0.170) 0.055 (0.207) 0.002 (0.193) -0.001 (0.193) -0.006 (0.192)

50 0.016 (0.157) 0.002 (0.150) 0.000 (0.150) 0.000 (0.152) 0.044 (0.180) 0.001 (0.170) -0.000 (0.170) -0.005 (0.169)

1.5

10 0.270 (0.879) -0.013 (0.525) -0.077 (0.693) -0.024 (0.540) 0.244 (0.572) 0.004 (0.446) -0.034 (0.452) -0.047 (0.437)

20 0.116 (0.450) 0.007 (0.370) -0.019 (0.359) -0.002 (0.368) 0.115 (0.330) 0.004 (0.288) -0.007 (0.286) -0.012 (0.287)

30 0.075 (0.336) 0.007 (0.297) -0.003 (0.292) -0.002 (0.288) 0.074 (0.249) 0.002 (0.227) -0.003 (0.226) -0.005 (0.227)

40 0.052 (0.270) 0.003 (0.247) -0.002 (0.245) -0.001 (0.245) 0.054 (0.208) -0.000 (0.194) -0.003 (0.193) -0.003 (0.195)

50 0.040 (0.234) 0.002 (0.218) -0.001 (0.217) 0.001 (0.218) 0.043 (0.181) 0.001 (0.170) -0.001 (0.170) -0.003 (0.172)

2.0

10 0.460 (1.249) -0.067 (0.658) -0.052 (1.078) -0.060 (0.699) 0.246 (0.558) 0.006 (0.432) -0.008 (0.460) -0.050 (0.424)

20 0.205 (0.679) 0.003 (0.523) -0.038 (0.541) 0.002 (0.533) 0.117 (0.328) 0.005 (0.285) -0.004 (0.286) -0.009 (0.285)

30 0.127 (0.476) 0.004 (0.405) -0.016 (0.399) 0.003 (0.410) 0.075 (0.250) 0.003 (0.227) -0.002 (0.227) -0.005 (0.227)

40 0.088 (0.379) 0.000 (0.337) -0.010 (0.333) 0.004 (0.347) 0.055 (0.207) 0.001 (0.192) -0.002 (0.192) -0.004 (0.192)

50 0.069 (0.326) -0.000 (0.298) -0.006 (0.296) 0.003 (0.306) 0.042 (0.180) -0.000 (0.170) -0.002 (0.170) -0.004 (0.172)
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Table 4: Estimated bias (root mean-squared error) for α and β, (β = 2.0)
Estimator of α Estimator of β

α n MLE BCE PBE FBE MLE BCE PBE FBE

0.5

10 0.015 (0.246) 0.005 (0.219) -0.007 (0.209) 0.018 (0.211) 0.333 (0.763) 0.011 (0.592) -0.056 (0.595) -0.106 (0.537)

20 0.004 (0.153) 0.002 (0.147) -0.000 (0.146) 0.005 (0.146) 0.146 (0.431) -0.002 (0.377) -0.017 (0.375) -0.024 (0.370)

30 0.003 (0.123) 0.001 (0.120) 0.000 (0.120) 0.002 (0.120) 0.095 (0.329) -0.001 (0.300) -0.007 (0.299) -0.011 (0.298)

40 0.002 (0.106) 0.001 (0.104) 0.000 (0.104) 0.002 (0.104) 0.070 (0.276) -0.001 (0.257) -0.004 (0.257) -0.006 (0.256)

50 0.001 (0.095) 0.000 (0.093) 0.000 (0.093) 0.001 (0.093) 0.057 (0.242) 0.000 (0.229) -0.002 (0.228) -0.003 (0.228)

1.0

10 0.103 (0.491) 0.001 (0.360) -0.048 (0.357) -0.001 (0.364) 0.349 (0.785) 0.025 (0.607) -0.040 (0.607) -0.060 (0.582)

20 0.042 (0.275) 0.001 (0.245) -0.008 (0.239) 0.000 (0.244) 0.160 (0.443) 0.011 (0.384) -0.004 (0.382) -0.018 (0.377)

30 0.026 (0.209) 0.001 (0.194) -0.003 (0.193) 0.001 (0.198) 0.100 (0.331) 0.003 (0.301) -0.003 (0.301) -0.008 (0.302)

40 0.019 (0.178) 0.001 (0.169) -0.001 (0.168) 0.001 (0.170) 0.075 (0.276) 0.003 (0.257) -0.000 (0.256) -0.008 (0.257)

50 0.015 (0.158) 0.001 (0.151) -0.000 (0.151) 0.000 (0.152) 0.060 (0.244) 0.004 (0.230) 0.001 (0.230) -0.007 (0.225)

1.5

10 0.287 (0.893) -0.002 (0.532) -0.064 (0.705) -0.024 (0.540) 0.346 (0.768) 0.022 (0.592) -0.025 (0.609) -0.062 (0.582)

20 0.110 (0.444) 0.003 (0.366) -0.023 (0.354) -0.002 (0.368) 0.153 (0.437) 0.004 (0.381) -0.010 (0.379) -0.016 (0.382)

30 0.068 (0.325) 0.002 (0.288) -0.008 (0.283) -0.002 (0.288) 0.100 (0.331) 0.003 (0.301) -0.003 (0.301) -0.007 (0.303)

40 0.051 (0.269) 0.003 (0.246) -0.002 (0.244) -0.001 (0.245) 0.074 (0.275) 0.003 (0.256) -0.001 (0.256) -0.005 (0.260)

50 0.040 (0.232) 0.002 (0.216) -0.001 (0.215) 0.001 (0.218) 0.057 (0.241) 0.001 (0.227) -0.002 (0.227) -0.004 (0.230)

2.0

10 0.454 (1.234) -0.070 (0.656) -0.055 (1.066) -0.060 (0.699) 0.324 (0.747) 0.004 (0.580) -0.011 (0.624) -0.067 (0.565)

20 0.200 (0.664) -0.001 (0.514) -0.041 (0.534) 0.002 (0.533) 0.148 (0.435) 0.000 (0.380) -0.012 (0.382) -0.013 (0.380)

30 0.121 (0.466) -0.002 (0.398) -0.021 (0.391) 0.003 (0.410) 0.093 (0.329) -0.003 (0.301) -0.009 (0.301) -0.007 (0.302)

40 0.090 (0.384) 0.002 (0.342) -0.009 (0.338) 0.004 (0.347) 0.071 (0.279) -0.001 (0.260) -0.004 (0.260) -0.006 (0.256)

50 0.072 (0.334) 0.003 (0.304) -0.003 (0.302) 0.003 (0.306) 0.057 (0.243) 0.001 (0.230) -0.001 (0.230) -0.005 (0.229)

In order to evaluate the overall performance of each of the three different estimators, in
terms of the bias and root mean-squared error, we adopted two measures introduced by
Cribari-Neto and Vasconcellos (2002), also considered in Lemonte (2011). These measures
are the integrated bias squared (IBSQ) and the average root mean-squared error (ARMSE)
are calculated for each value of n as follows:

IBSQ(n) =

√√√√ 1

16

16∑
h=1

(rh,n)2 and ARMSE(n) =
1

16

16∑
h=1

RMSEh,n

where rh,n and RMSEh,n are the estimated bias and estimated root mean-squared error for
the h-th scenario, h = 1, . . . , 16.

The results showed in Tables 5 and 6 indicate that the three corrections, BCEs, PBEs and
FBEs, outperform the MLEs. Also, Tables 5 and 6 show that these measures are very close
for the BCEs, PBEs and FBEs.

Table 5: Integrated bias squared norm

n
Estimator for α Estimator for β

MLE BCE PBE FBE MLE BCE PBE FBE

10 0.2750 0.0333 0.0499 0.0334 0.2296 0.0103 0.0284 0.0521

20 0.1185 0.0033 0.0222 0.0027 0.1042 0.0038 0.0079 0.0126

30 0.0731 0.0031 0.0095 0.0022 0.0670 0.0020 0.0039 0.0057

40 0.0523 0.0016 0.0049 0.0021 0.0496 0.0014 0.0021 0.0044

50 0.0408 0.0014 0.0031 0.0016 0.0395 0.0011 0.0012 0.0032
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Table 6: Average root mean-squared error

n
Estimator for α Estimator for β

MLE BCE PBE FBE MLE BCE PBE FBE

10 0.8144 0.4723 0.6731 0.4893 0.5235 0.4057 0.4135 0.3881

20 0.4331 0.3484 0.3525 0.3536 0.2987 0.2607 0.2598 0.2585

30 0.3124 0.2734 0.2692 0.2759 0.2263 0.2063 0.2058 0.2062

40 0.2557 0.2322 0.2301 0.2345 0.1892 0.1763 0.1761 0.1762

50 0.2215 0.2054 0.2043 0.2079 0.1655 0.1563 0.1562 0.1562

Based on the results of this simulation study, it is clear that the second-order bias reduction
estimators (BCEs, PBEs and FBEs) are more efficient than the MLEs. Finally, although the
three methods are equally efficient, the BCEs and FBEs are computationally easier than the
PBEs.

5. Applications

In this section we consider the two real data sets used in Mazucheli et al. (2018b) to illustrate
the importance of the proposed bias-corrected estimators. For both data sets, Mazucheli
et al. (2018b) showed the superiority of the unit-Weibull distribution against 8 competing
distributions on the unit interval.

The first data set is from Dumonceaux and Antle (1973) and refers to 20 observations of
the maximum flood level (in millions of cubic feet per second) for Susquehanna River at
Harrisburg, Pennsylvania. The second data set refers to 48 observations obtained from 12
core samples from petroleum reservoirs that were sampled by 4 cross-sections.

The MLEs and their estimated biases are given in Table 7 for both data sets. Note that,
for data set II, the estimated biases of the MLE α̂ using the three corrected estimates are
negative.

Table 7: Estimated Biases of MLEs

Data Set I Data Set II

Method α̂ = 1.0248 β̂ = 3.9036 α̂ = 0.0602 β̂ = 5.1130

Cox-Snell 0.0356 0.2693 −0.0001 0.1469
Parametric bootstrap 0.0464 0.3059 −0.0003 0.1610
Firth 0.0340 0.3336 −0.0010 0.1428

Table 8 shows the estimated variance-covariance matrices of various estimators, i.e., the in-
verse expected information matrix evaluated at these estimators.
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Table 8: Estimated variance-covariance matrices of estimators

Estimator Data Set I Data Set II

MLE

(
0.057575 −0.048431
−0.048431 0.463182

) (
0.000555 −0.012603
−0.012603 0.331102

)

BCE

(
0.054519 −0.047387
−0.047387 0.401489

) (
0.000557 −0.012255
−0.012255 0.31235

)

PBE

(
0.053616 −0.047572
−0.047572 0.393434

) (
0.000559 −0.012248
−0.012248 0.310579

)

FBE

(
0.054647 −0.046455
−0.046455 0.387394

) (
0.000570 −0.012402
−0.012402 0.312864

)

To investigate the variability of the various estimators, we computed the Bootstrap standard
errors, based on 20,000 Bootstrap samples (Efron and Tibshirani 1993). The results are
presented in Table 9 along with the parameter estimates for both data sets. Note that, for
both data sets, the three corrected estimates have smaller bootstrap standard errors than the
corresponding uncorrected estimates. Moreover, the three corrected estimates have almost
equal bootstrap standard errors.

Table 9: MLEs, BCEs, PBEs and FBEs (Bootstrap standard-errors).

Data Set I Data Set II

Estimator α β α β

MLE 1.0248 (0.2810) 3.9036 (0.7872) 0.0602 (0.0237) 5.1130 (0.6157)
BCE 0.9892 (0.2730) 3.6343 (0.7439) 0.0603 (0.0237) 4.9661 (0.5980)
PBE 0.9784 (0.2700) 3.5977 (0.7364) 0.0605 (0.0237) 4.9520 (0.5963)
FBE 0.9907 (0.2713) 3.5699 (0.7297) 0.0612 (0.0237) 4.9701 (0.5947)

6. Concluding remarks

In Mazucheli et al. (2018b) a new distribution, called unit-Weibull distribution, is proposed
for modeling data over the unit interval. It was observed that the maximum likelihood
estimates of the parameters of the proposed distribution are biased in small samples. For
this distribution, the problem of reducing the biases of the MLEs of the parameters was not
addressed in the literature. This problem is important to improve the statistical inference
associated with this distribution. Here, we have applied three methodologies widely known in
the literature for bias reduction to derive second-order bias corrected MLEs for the parameters
of the unit-Weibull distribution. The resulting estimates are called bias-corrected, parametric
bootstrap estimates and Firth bias corrected estimates. Our simulation results and two real
data applications show that the considered three bias-corrected estimates are preferred, in
terms of efficiency, over the classical maximum likelihood estimates.
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