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REVIEW

A collection of parametric modal regression models for bounded 
data
André F. B. Menezes a, Josmar Mazucheli b, and Subrata Chakraborty c

aDepartamento De Estatística, Universidade Estadual De Campinas, Campinas, Brasil; bDepartamento De Estatística, 
Universidade Estadual De Maringá, Maringá, Brasil; cDepartment of Statistics, Dibrugarh University, Assam, India

ABSTRACT
Modal regression is an alternative approach for investigating the rela-
tionship between the most likely response and covariates and can hence 
reveal important structure missed by usual regression methods. This 
paper provides a collection of parametric mode regression models for 
bounded response variable by considering some recently introduced 
probability distributions with bounded support along with the well- 
established Beta and Kumaraswamy distribution. The main properties of 
the distributions are highlighted and compared. An empirical comparison 
between the considered modal regression is demonstrated through the 
analysis of three data sets from health and social science. For reprodu-
cible research, the proposed models are freely available to users as an 
R package unitModalReg.
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1. Introduction

Regression analysis is carried out to describe the influence of covariates on the response variable under 
investigation. In usual and most commonly applied regression analysis, the conditional mean of the 
response is modeled to describe the existing average relationship between the response and the 
covariates. However, despite the widespread applications, the mean regression might at times be 
found wanting specifically, in the presence of outliers and/or heavy-tailed noise in the response.

The earliest references to modal regressions are found in Sager and Thisted (1982) and Lee (1989). 
The former discussed non-parametric maximum likelihood estimation of isotonic modal regression 
function as a minimization of zero-one loss function and emphasized the role of mode as an objective 
statistical measure of interest. The authors also gave situational justification of preferring mode 
regression over mean or median regression. The authors gave three reasons (i) mode is the only 
parameter which makes sense while dealing with ordinal categorical response citing an example from 
study of treatment efficacy, (ii) when primary distribution of a location is contaminated by another 
distribution, mode regression is found to be more robust than the mean or median regression and (iii) 
when one's interest lies on mode itself Lee (1989) investigated mode regression stating how mode 
minimizes an expected loss function which arises in risk function approach to Bayesian estimation. 
They showed how mode regression may have major application in dealing with truncated asymmetric 
response under homogeneity.

Conditional mode regression is known to provide better and more informative description of the 
situation in hand than conditional mean or median regression models when the conditional distribu-
tion of response variable given covariate is heavy-tailed or skewed. Moreover, mode-based prediction 
interval tends to have a higher coverage probability than a mean-based prediction interval (Yao and Li 
2014). The following narration from Chen et al. (2016) puts mode regression in proper perspective is 
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worth recalling. “Why would we ever use modal regression in favor a conventional regression method? 
The answer, at a high-level, is that conditional modes can reveal structure that is missed by the 
conditional mean. Figure 1 gives a definitive illustration of this point: we can see that, for the data 
examples in question, the conditional mean both fails to capture the major trends present in the response, 
and produces unnecessarily wide prediction bands. Modal regression is an improvement in both of these 
regards (better trend estimation and narrower prediction bands)”.

Chen (2018) made a nice review of mode regression using kernel density estimation. Wang et al. 
(2017) while investigating the association between the cognitive assessment of an individual with their 
neuroimaging features have shown how the mean regression analysis failed to reveal true picture due 
to the presence of heavy-tailed and skewed noise presented in data. They further stated the applic-
ability of modal regression in the other field such as econometric, astronomy, traffic engineering, etc.

Most of the early works related to mode regression revolved around non-parametric and semi- 
parametric set up. The attention to the parametric mode regression was comparatively negligible this 
despite semi-parametric and non-parametric mode regression methods having a slow rate of con-
vergence and dependency to bandwidth selection, hence minimal practical utility (Aristodemou, 
2014). Pan et al. (2020) in their introductory section described the reason why parametric mode 
regression can be advantageous option for the machine learning community by proposing 
a parametric mode regression model using implicit function capable of analyzing multi-modal data, 
especially with large bandwidth limit.

Of late there are renewed interest in derivation of new probability distribution with bounded 
support especially in ð0; 1Þ as an alternative the famous Beta and Kumaraswamy distributions and also 
propose corresponding regression model to compete with the Beta regression. Some of these distribu-
tions are unit-Weibull (Mazucheli et al. 2020b, 2018c), unit-Birnbaum-Saunders (Mazucheli et al. 
2018b), unit-Lindley (Mazucheli et al. 2019b), unit-Inverse Gaussian (Ghitany et al. 2019), unit- 
Gompertz (Mazucheli et al. 2019a) and new unit-Lindley (Mazucheli et al. 2020a). Its worth 

Figure 1. Mode and variance relationship for different values of ϕ.
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mentioning here that not all the distributions have compact analytical expression for mode, which is 
a prerequisite for modal regression.

Aristodemou (2014) presented a modal regression based on gamma distributed using a new 
parameterization to bring in the mode and precision parameters. Very recently, Zhou and Huang 
(2020) proposed a parametric modal regression model by considering the Beta distribution and 
presented an application with data from the Alzheimer’s Disease Neuroimaging Initiative. With 
above background, we found enough motivation to present a collection of mode regression models 
based on some recently proposed probability distribution with support in (0,1) and having the 
unimodality property. For the sake of ranking the models, we considered three carefully chosen 
data sets for modeling using the proposed mode regression along with the Beta and Kumaraswamy 
based models.

The first data set which is about the relationship between stress (response variable) and anxiety is 
unimodal, and the response having increasing trend with respect to the covariate anxiety. The next 
data are about the proportion of votes received by a candidate in the second turn of presidential 
elections of 2010 in the municipals of Rio de Janeiro (RJ) and Ceara (CE) states collected with an aim 
to ascertain the impact of MHDI and region on the proportion of votes. In these data also the response 
variable is unimodal and decreasing with MHDI and state-wise disparity of proportion of votes is high. 
The last data set is a small one with fewer observations and is purposefully chosen to evaluate the 
flexibility of the models for small sample. These data are related to the migration of birds and intended 
to study the association between the proportion of birds that successfully reach the winter grounds and 
average mass (in grams), average wingspan (in cm) and the distance traveled (in km). In these data, 
maximum proportion that is the mode is the measure of interest. For all the data sets, we applied all 
four different mode regression models and our findings clearly suggest that there is no clear consensus 
on a particular model as the best in all cases. Instead, our results point toward the importance of 
having different models for different problems.

This paper is unfold as follows. Section 2 describes the main properties of the distributions and 
explores their peculiarities. A general definition of parametric modal regression, parameter estimation, 
and model adequacy are discussed in Section 3. The real data applications are presented in Section 4. 
Finally, a discussion of the important results is presented in Section 5.

2. Background

This section introduces the bounded distributions that are the basis of the proposed regression models. 
The focus is on the main properties and a new parametrization in terms of the mode. Furthermore, 
a theoretical comparison between the shapes of the distributions is also presented.

Without loss of generality, let Y be a random variable bounded on the unit interval with distribu-
tion Fða; bÞ, where a; b> 0 are shape parameters. If the transformation ða; bÞ ! ðμ;ϕÞ is one-to-one, 
where μ 2 ð0; 1Þ is the mode of F and ϕ> 0 is a nuance parameter; hence, it is possible to obtain 
a parametrization based on the mode and subsequently the parametric modal regression for bounded 
data.

2.1. The Beta distribution

The Beta distribution is certainly the first choice to describe data on ð0; 1Þ. It has been extensively 
discussed and several applied works using the Beta distribution are presented in the literature. 
A random variable Y follows a Beta distribution with shape parameters a; b > 0, if its probability 
density function (p.d.f.) can be written as 

f ðyja; bÞ ¼
1

Bða; bÞ
ya� 1 ð1 � yÞb� 1

; 0< y< 1 
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where Bzða; bÞ ¼
ðz

0
ta� 1 ð1 � tÞb� 1 dt denotes the incomplete Beta function and Bða; bÞ ¼

ð1

0
ta ð1 � tÞb� 1dt is the complete Beta function. When a; b > 1 there is a unique mode for the Beta 

distribution, which is given by 

ModeðYÞ ¼
a � 1

aþ b � 2
: (1) 

Recently, Zhou and Huang (2020) proposed a new parametrization of Beta distribution based on the 
mode. In particular, they set a ¼ 1þ ϕμ and b ¼ 1þ ϕð1 � μÞ, where ϕ> 0 is the shape/precision 
parameter and μ 2 ð0; 1Þ is the mode.

Under this parametrization, the p.d.f. and variance of Beta are given, respectively, by 

f ðyjμ;ϕÞ ¼
yμϕ ð1 � yÞð1� μÞϕ

Bðμϕþ 1; ð1 � μÞϕþ 1Þ
0< y< 1 (2) 

and 

VarðYÞ ¼
ð1þ ϕμÞð1þ ϕð1 � μÞÞ
ð2þ ϕÞ2ð3þ ϕÞ

: (3) 

2.2. The Kumaraswamy distribution

Kumaraswamy (1980) introduced a new bounded distribution which has known by his named and 
recently received great attention. In particular, the Kumaraswamy distribution can be obtained by 
using the transformation expð� YÞ, when Y follows the generalized exponential distribution (Gupta 
and Kundu 1999).

If Y follows the Kumaraswamy distribution, its p.d.f. is given by 

f ðyja; bÞ ¼ abya� 1 ð1 � yaÞ
b� 1
; 0< y< 1 

where a; b> 0 are shape parameters.
As discussed by Jones (2009) the Kumaraswamy distribution is unimodal when a; b> 1 and its 

mode is given by 

ModeðYÞ ¼
a � 1

ab � 1

� �1=a

: (4) 

In order to propose a mode-type parametrization for Kumaraswamy distribution, we write its p.d.f. in 
terms of b ¼ ϕ� 1 1þ μ� ϕðϕ � 1Þ

� �
and a ¼ ϕ, where ϕ> 0 is the shape parameter and μ 2 ð0; 1Þ is the 

mode. Hence, the p.d.f. and variance of Kumaraswamy can be written, respectively, as 

f ðyjμ;ϕÞ ¼ 1þ ð1 � ϕÞμ� ϕ� �
yϕ� 1 ð1 � yϕÞ

ϕ� 1 1þμ� ϕðϕ� 1Þ½ �� 1
; 0< y< 1 (5) 

and 

VarðYÞ ¼ bB 1þ 2=ϕ; bð Þ � bB 1þ 1=ϕ; bð Þf g
2
: (6) 

2.3. The unit-Gamma distribution

Grassia (1977) proposed the unit-Gamma (UGa) distribution, which has been neglected in the 
statistical literature until recently, Mazucheli et al. (2018a) deriving bias corrections for its parameters. 
Since then several works related to unit-Gamma have been presented.
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If Y follows the UGa distribution, its p.d.f. is given by 

f ðyja; bÞ ¼
ba

ΓðaÞ
yb� 1 ð� log yÞa� 1

; 0< y< 1 

where a; b> 0 are shape parameters.
According to Grassia (1977) the UGa distribution is unimodal when a; b > 1 and its mode is 

given by 

ModeðYÞ ¼ exp
1 � a
b � 1

� �

: (7) 

In order to introduce a mode-type parametrization for UGa distribution let assume that 
b ¼ 1þ logðμÞ � ϕ½ � log ðμÞ� 1, where ϕ ¼ a> 0 is the shape parameter and μ 2 ð0; 1Þ is the mode. 
Thus, the p.d.f. and variance of UGa are given, respectively, by 

f ðyjμ;ϕÞ ¼
1

ΓðϕÞ
1þ logðμÞ � ϕ½ �

ϕ log ðμÞ� ϕyð1� ϕÞ logðμÞð� log yÞϕ� 1
; 0< y< 1 (8) 

and 

VarðYÞ ¼
ϕ

ϕþ 2

� � 1þlogðμÞ� ϕ½ � log ðμÞ� 1

�
ϕ

ϕþ 1

� �2 1þlogðμÞ� ϕ½ � log ðμÞ� 1

: (9) 

2.4. The unit-Gompertz distribution

Recently, Mazucheli et al. (2019a) by considering an appropriate transformation on Gompertz 
distribution introduced the unit-Gompertz ðUGzÞ distribution, for which the p.d.f. is given by 

f ðyja; bÞ ¼ aby� ðbþ1Þ exp � aðy� b � 1Þ
� �

; 0< y< 1 

where a; b> 0 are shape parameters.
The authors showed that UGz distribution is log-concave and unimodal for all a; b > 0. The mode is 

reached at 

ModeðYÞ ¼
ab

bþ 1

� �1=b

: (10) 

Similar to other distributions, the mode-type parametrization for UGz is obtained by considering a ¼
ϕ� 1μϕðϕþ 1Þ and b ¼ ϕ, where ϕ> 0 is the shape parameter and μ 2 ð0; 1Þ is the mode. Thus, the p.d. 
f. and variance of UGz are given, respectively, by 

f ðyjμ;ϕÞ ¼ μϕðϕþ 1Þy� ðϕþ1Þ exp � ϕ� 1μϕðϕþ 1Þðy� ϕ � 1Þ
� �

; 0< y< 1 (11) 

and 

VarðYÞ ¼ ϕ� 1μϕðϕþ 1Þ
� �2=ϕ

e2ϕ� 1μϕðϕþ1Þ Γ 1 �
2
ϕ
;ϕ� 1μϕðϕþ 1Þ

� �

� Γ 1 �
1
ϕ
;ϕ� 1μϕðϕþ 1Þ

� �� �2
( )

:

(12) 

where Γð�; �Þ is the upper incomplete gamma function.
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2.5. Comparing bounded distribution

To explore and compare the flexibility of the aforementioned models to deal with unimodal bounded 
data, Figures 1 and 2 present the behavior of variance in terms of mode and the shape of p.d.f. 
according to variance and mode.

Figure 1 shows the mode and variance relationship of the aforementioned distribution for different 
values of ϕ. For unit-Gompertz, we also consider ϕ ¼ 0:5, since the distribution is unimodal for all 
ϕ> 0, as discussed above. Interestingly, to point out that:

• All four distributions have important differences in their shapes.
• unit-Gamma and Kumaraswamy have complementary behavior. Their maximum variance is 

approximately 0:08 for μ! 0 and μ! 1, respectively.
• Beta presents a symmetric relationship between mode and variance. Its maximum variance is 

around 0:06 attained at μ ¼ 0:5.
• unit-Gompertz has a singular behavior and the maximum variance is around 0:07.
To compare the shape of distributions used in regression analysis, we fixed the values of ϕ to have 

different variance when μ ¼ 0:5. The p.d.f. presented in Figure 2 shows that the distributions have 
different shapes for the same value of variance and mode. This theoretical results emphasize the 
distinct characteristics of the distributions, which in practice means that one distribution can fit better 
than the other depending on the observed data set. Therefore, we humbly recommend that practi-
tioners should check all distributions available in order to provide more reliability of inference 
conclusions.

3. Regression modeling

Suppose that a random experiment (designed or observational) is conducted and the primary outcome 
can be describe by a continuous and bounded random variable Yi, for i ¼ 1; . . . ; n, conditionally to 
fixed-effects or non-random variable xi. We shall assume that the observed variable yi is a set of 

Figure 2. Probability density functions for distinct values of variance (fixed for μ ¼ 0:5) and mode.
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independent realizations of Yi according to the distributions Fð�; �Þ. Thus, the mode regression models 
based on the aforementioned distributions are defined by 

Yijxi,Fðμi;ϕÞ; with μi ¼ g � 1 xT
i β

� �
; (13) 

where ϕ is a precision/shape parameter of the distribution F , μi denotes the mode of F and gð�Þ is an 
appropriate link function.

Since the mode of all distribution lies on ð0; 1Þ the most useful well-known link functions for gð�Þ
are logit: gðμiÞ ¼ log μi=ð1 � μiÞ

� �
; probit: gðμiÞ ¼ Φ� 1ðμiÞ, where Φ� 1ð�Þ is the standard normal 

quantile function; and complementary log-log: gðμiÞ ¼ log � logð1 � μiÞ
� �

.
Due to the direct interpretation of the parameters, in this paper we consider the logit link function. 

Thus, we have that 

μi
1 � μi

¼ exp β0 þ β1x1i þ . . .þ βpxpi

� �
; (14) 

which leads to the following interpretations:
• If x1i is continuous, for a unit increase, the percentage change in the mode response is 

100% � ðebβ1 � 1Þ, keeping the other predictors fixed.
• If x1i is an indicator variable then 100% � ebβ1 represents the percentage change in the mode 

response for x1i ¼ 1 to x1i ¼ 0, keeping the other predictors fixed.
As discussed in Section 2, the aforementioned distributions allow heteroscedasticity, that is, the 

conditional variance depends on the covariates. Table 1 summarizes the main properties of the 
bounded distributions considered and establishes the notation.

4. Estimation

Parameter estimation and inference are conducted under the classical approach. Let y ¼ ðy1; . . . ; ynÞ

be a random sample from (13), the maximum likelihood of the parameter vector θ ¼ ðβ;ϕÞ is given by 

bθ ¼ arg sup
θ2Θ

,ðθjyÞ
� �

(15) 

where ,ð�j�Þ denotes the log-likelihood of distribution Fð�; �Þ and Θ is the parameter space of θ.
For the proposed models, it is not possible to derive analytical solution for the MLE bθ, thus 

numerical solution using optimization algorithm such as Newton-Raphson and quasi-Newton is 
performed. In particular, we considered the BFGS algorithm available in the optim function from R. 
Furthermore, inference regarding the model parameters is conducted using the large sample theory of 
the maximum likelihood (Cox and Hinkley 1974), where the observed Fisher information matrix 
given by 

JðbθÞ ¼ �
@

@θT@θT , θjyð Þ

�
�
�
�

θ¼bθ 

is used to estimated the standard errors of parameter.

Table 1. Summary of the considered modal regression models for bounded data.

Distribution Notation Unimodal Variance

Beta Betaðμi;ϕÞ ϕ> 1 ð1þϕμiÞ ð1þϕ ð1� μiÞÞ
ð2þϕÞ2ð3þϕÞ

Kumaraswamy Kumðμi;ϕÞ ϕ> 1 See (6)
unit-Gamma UGaðμi;ϕÞ ϕ> 1 See (9)
unit-Gompertz UGzðμi;ϕÞ ϕ> 0 See (12)
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The proposed models are freely available to users through the open-source R package 
unitModalReg at https://github.com/AndrMenezes/unitModalReg, with a similar interface to the 
standard glm (R Core Team 2020) function for fitting generalized linear models.

For sake of simplicity, we are assuming that the nuance parameter does not vary across the 
covariates. This is justified by the fact that the four regression models accommodate heteroscedasticity 
without the need to model directly the nuance parameter, see the expressions of variance in Table 1. 
Nonetheless, it is noteworthy that a strictly positive link function relating the nuance parameter ϕ with 
covariates wi, not necessarily equal to xi, can be considered.

4.1. Model adequacy

In order to evaluate the departures from model assumptions, the randomized quantile residuals 
introduced by Dunn and Smyth (1996) are considered. Generally, they are defined as follows 

ri ¼ Φ� 1 Fðyi; jbμi;
bϕÞ

h i
; i ¼ 1; . . . ; n;

where Φð�Þ is the standard normal distribution function, Fð�j�; �Þ is the cumulative distribution 
function of F distribution and bμi ¼ g � 1ðxT

i
bβÞ.

Apart from the variability due to the estimates of parameters, these residuals have standard normal 
distribution if the proposed model is correctly specified (Dunn and Smyth 1996). Thus, to check if the 
model assumption is adequate, we can examine the residuals plots with simulated envelope proposed 
by Atkinson (1981). If a large proportion of the observations lies outside the envelope, then one has 
evidence against the adequacy of the fitted model (Oliveira et al. 2019).

5. Applications

In this section, three real applications are presented in order to explore the potentiality of each 
regression model to solve empirical problems. To perform a discrimination between the models, 
two likelihood-based criteria are considered. The AIC criterion proposed by Akaike (1974) and 
defined as AIC ¼ 2p � 2 logbL, where L is the likelihood evaluated at the MLE and p is the number 
of parameters in the model. The decision rule is favorable to the model with the lowest value. In 
addition, we performed a formal test based on the Vuong likelihood ratio test for non-nested models 
(Vuong 1989). The Vuong statistic to compare two regression models is defined by 

T ¼
1

bω2 ffiffiffi
n
p

Xn

i¼1
log

f ðyijxi;bθÞ
gðyijxi;bγÞ

where 

bω2 ¼
1
n

Xn

i¼1
log

f ðyijxi;bθÞ
gðyijxi;bγÞ

 !2

�
1
n

Xn

i¼1
log

f ðyijxi; θÞ
gðyijxi;bγÞ

� �" #2 

is an estimator for the variance of 1ffiffi
n
p
Pn

i¼1 log f ðyijxi;bθÞ
gðyijxi;bγÞ

, f ðyijxi;bθÞ, and gðyijxi;bγÞ are the correspond-

ing rival densities evaluated at the maximum likelihood estimates. When n!1 we have that 

T!D Nð0; 1Þ. Therefore, at α% level of significance the null hypothesis of the equivalence of the 
competing distributions is rejected if jTj > zα=2, where zα=2 is the α=2 quantile of standard normal 
distribution. In practical terms, f ðyijxi;bθÞ is better (worse) than gðyijxi;bγÞ if T > zα=2 (or T < � zα=2).

We also provide in Appendix A empirical graphics and formal statistical test to check misspecifica-
tion of link function for all models in each applications.
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5.1. Dependency of anxiety on stress

This data set is from Smithson and Verkuilen (2006) and consists of a sample of 166 nonclinical 
women in Townsville, Queensland, Australia. The variables are linearly transformed scales from the 
Depression Anxiety Stress Scales, which normally range from 0 to 42. In Figure 3, left-hand plot 
depicts the density function of the response variable (anxiety) while in the right, it shows the scatter 
plotted the anxiety against stress. From this figure, its easy to see that the density is unimodal, also as 
the stress score increases the anxiety also increase. In these data, our focus is on the modal anxiety and 
how it is being caused by stress. Here, modeling the conditional mode is obviously more appropriate 
than the conditional mean or median due to the corresponding risk to public health.

Here, we are regressing the mode of anxiety in terms of the stress predictor, i.e., 

logitðμiÞ ¼ β0 þ β1stressi; i ¼ 1; . . . ; 166:

Table 2 reports the parameter estimates, their standard errors (in parentheses) and the AIC 
criterion by model. Also, Table 3 shows the Voung test results for all possible model comparisons. 
Based on the AIC criterion and Voung test the UGz distribution provides the best fit for this data set. 
However, it is observed that the Voung test do not reject the null hypothesis of model equivalence 
between UGz and Kum regression models. The estimated coefficient associated to stress effect (β1) of 
UGz model is quite different comparing to other distribution specification, especially for Beta and 

Figure 3. Kernel density plot of anxiety and scatter plot of anxiety versus stress.

Table 2. Summary of the fitted models – Dependency of anxiety on stress.

Parameter Beta UGz UGa Kum

β0 −6.940 (0.590) −5.549 (0.171) −7.726 (0.637) −8.441 (0.893)
β1 8.472 (0.831) 4.063 (0.490) 9.432 (0.868) 6.291 (0.621)
ϕ 2.649 (0.100) 0.983 (0.071) 7.717 (0.756) 1.014 (0.012)
AIC −521.070 −619.737 −588.402 −605.412

Table 3. Vuong tests for all model combinations – 
Dependency of anxiety on stress.

Comparison Vuong p-value

Beta versus UGz −9.042 < 0.000
Beta versus UGa −7.068 < 0.000
Beta versus Kum −3.833 < 0.000
UGz versus UGa 2.371 0.009
UGz versus Kum 0.905 0.183
UGa versus Kum −1.120 0.131
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UGa regression models. For instance, the β1 estimate of Beta is approximately 52% large than the UGz 
regression.

The half-normal plot with simulated envelope presented in Figure 4 reinforce that Beta distribution 
do not provide a good fit to these data set, motivating the use of different distributions assumption to 
analyze an observed data set.

This empirical application shows the importance of providing diagnostic plots (the Half-normal 
plots) beside the goodness-of-fit measures. In fact, the Voung test conducted shows that the UGz and 
Kum model are statistically equivalent, since the p-value is not significantly small (see Table 3).

5.2. Proportion of votes

In this analysis, we considered the proportion of votes that the Dilma Roussef of the Partido dos 
Trabalhadores (PT) received in the second turn of presidential elections of 2010 in the municipals of 
Rio de Janeiro (RJ) and Ceará (CE) states. Our goal is to measure the impact of MHDI and region 
(southeast and northeast) on the proportion of votes achieved by Dilma in 2010. The data set has 270 
observations, 86 cities of RJ and 184 from CE. The source of data is Tribunal Superior Eleitoral (http:// 
www.tse.jus.br/) and Atlas do Desenvolvimento Humano no Brasil (http://www.atlasbrasil.org.br/2013/ 
pt/).

In any election process, the parties more often are interested to check the determinants (covariates) 
of the modal proportion in their favor for obvious reason to learn voters behavior to formulate their 
future poll strategies. Averages of proportion of votes is not of much interests compared to the modal 
proportion.

For an empirical investigation the covariate MHDI is categorized based on the quantiles using 3 
bins the resulting classes are ð0:54; 0:61Þ; ð0:611; 0:659Þ and ð0:66; 0:837Þ. Hence, the density of the 
response variable (proportion of votes) is plotted in Figure 5 from left to right for these three classes 
according to the state CE (in blue) and RJ (in red). In fact, a visual inspection indicates that the 
response variable conditional to covariate MHDI is unimodal except for the state RJ in second 
category where few smaller more peaks around the the main mode can be seen. We further observe 
from the plots that (i) the greater the MHDI lesser the proportion of votes and (ii) there is a bigger 
difference of proportion of votes between the states.

Figure 4. Half-normal plot with simulated envelope – Dependency of anxiety on stress.
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We considered the dip statistics introduced by Hartigan (1985) to test the null hypothesis 
H0: distribution is unimodal versus the alternative hypothesis H1: the distribution is non- 
unimodal, that is, at least bimodal. As shown in Table 4 for all the categories, the dip test do 
not reject the null hypothesis of unimodality, that is, that the distribution of proportion of 
votes of Dilma is unimodal.

To analyze the impact of MHDI and state on the proportion of votes of Dilma, we consider the 
following linear predictor for the mode of the aforementioned distributions 

Figure 5. Kernel density plots of proportion of votes of Dilma according to the categorized MHDI (from left to right 
ð0:54; 0:61Þ; ð0:611; 0:659Þ and ð0:66; 0:837Þ) and colored by the states.

Table 4. Dip statistic and p-value to test the unimodality of proportion 
of votes conditional to the categorized MHDI and states.

State MHDI Statistic p-value

CE [0.54; 0.61) 0.0341 0.6808
CE [0.611; 0.659) 0.0499 0.1134
RJ [0.611; 0.659) 0.0856 0.8446
CE [0.66; 0.837) 0.0870 0.5238
RJ [0.66; 0.837) 0.0263 0.9884

Table 5. Summary of the fitted models – Proportion of votes.

Parameter Beta UGz UGa Kum

β0 3.211 (0.438) 1.439 (0.527) 3.288 (0.425) 3.298 (0.365)
β1 −3.295 (0.706) −0.686 (0.834) −3.444 (0.689) −3.389 (0.587)
β2 −1.237 (0.081) −1.613 (0.099) −1.214 (0.085) −1.069 (0.073)
ϕ 3.550 (0.090) 4.587 (0.263) 11.184 (0.949) 8.686 (0.464)
AIC −642.321 −477.106 −629.813 −597.885
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logitðμiÞ ¼ β0 þ β1MHDIi þ β2Statei; i ¼ 1; . . . ; 270 

where Statei ¼ 1 if the i city is from RJ and 0 if it is from CE.
Table 5 lists the parameter estimates, their standard errors (in parentheses) and the AIC 

criteria by model. For Beta, UGa and Kum regression model, the ϕ estimates are greater than 
one, indicating that the response variable conditional to the covariates are unimodal. The 
obtained results show a large difference, in terms of AIC values, in favor to Beta and UGa 
distributions, with a slight superiority of the former. However, the estimated coefficients are very 
similar, except for β1 in UGz mode, which implies in related interpretations. This model in 
comparison corroborated with Voung tests performed for all model combinations and reported 
in Table 6.

To check the model assumption, the half-normal plot with simulated envelope of the 
proposed models is presented in Figure 6. These figures corroborate with likelihood criteria 
and show that the Beta and UGa following by Kumaraswamy models provide the best fit to 
these data.

Based on the inference results of the models, it can be concluded that (i) the mode of 
response variable decrease approximately by 3:6%ðe� 3:3Þ as the MHDI increase, this means 
that cities with large MHDI provided less votes for Dilma and (ii) the RJ state has a mode 
30%ðe� 1:2Þ smaller than the CE, meaning that the cities of CE state provide more votes than RJ 
for Dilma.

Table 6. Vuong tests for all model combinations – 
Proportion of votes.

Comparison Vuong p-value

Beta versus UGz 15.057 < 0.000
Beta versus UGa 1.337 0.091
Beta versus Kum 2.953 0.002
UGz versus UGa −5.594 < 0.000
UGz versus Kum −5.011 < 0.000
UGa versus Kum 1.432 0.076

Figure 6. Half-normal plot with simulated envelope.
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5.3. Birds migration

This data set has been taken from the recent book of Korosteleva (2019) and related to migration of 
birds. As mentioned by the author, the source of the data set came from consulting projects, which she 
had involved. In particular, a group of ornithologists ringed 19 flocks of migratory birds prior to 
migration and collected some measures. This analysis is important to evaluate the empirical model 
assumptions when the sample size is small.

Here, the aim of investigation is to seek the association between the proportion of birds that 
successfully reach the winter grounds and average mass (in grams), average wingspan (in cm) and the 
distance traveled (in km). Again, it is more adequate to consider modal proportion instead of mean as 
an investigator might ask how the covariates impact in determining the modal proportion of success-
ful winter migration. Hence, we have regressed the modal proportion of birds that successfully reach 
the winter grounds on the covariates average mass (in grams), average wingspan (in cm) and the 
distance traveled (in km). We consider the following linear predictor for the mode parameter 

logitðμiÞ ¼ β0 þ β1Massþ β2Wingspanþ β3Distance; i ¼ 1; . . . ; 19:

Table 7 shows the parameter estimates, their standard errors (in parentheses) and the AIC criteria 
for each model. For Beta, UGa and Kum regression models the ϕ estimates are greater than one, 
indicating that the response variable conditional to the covariates is unimodal. The results show 
a quite difference, in terms of AIC and Voung statistic (see Table 8), in favor to Kumaraswamy 

Figure 7. Half-normal plot with simulated envelope – Birds migration.

Table 7. Summary of the fitted models – Birds migration.

Parameter Beta UGz UGa Kum

β0 7.574 (3.423) 5.643 (5.069) 4.280 (1.384) 9.847 (3.359)
β1 −0.263 (1.032) −0.168 (1.279) −0.587 (1.796) 0.084 (0.315)
β2 −0.556 (1.826) −1.473 (3.030) 5.002 (5.959) −2.035 (1.026)
β3 −3.260 (1.397) −2.302 (1.927) −3.838 (2.398) −3.785 (1.331)
ϕ 1.009 (0.452) 0.615 (0.290) 1.273 (0.388) 3.083 (0.737)
AIC −2.909 3.245 −4.383 −6.730
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distribution. Also, the estimated coefficients are very different according to distribution specification, 
particularly the Mass (β1) and Wingspan (β2) effects.

The half-normal plot with simulated envelope presented in Figure 7 evidencing that the assumption 
of Kumaraswamy distribution is more appropriate for this data set.

6. Discussion

The present paper has contributed with a discussion and proposition of parametric modal regression 
for bounded data. Three new models are proposed, based on the unit-Gamma, Kumaraswamy and 
unit-Gompertz distributions. The proposed models along with the Beta distribution are applied in 
modeling three different data sets. Maximum likelihood estimation for model fitting and model 
selection performed using AIC criterion and Voung test, while model adequacy is checked by residuals 
plots with simulated envelope. All the four models investigated presents different characteristics and 
proved to be useful in different context as potential modal regression models for bounded response. 
Our findings for the modeling highlight these clearly. Furthermore, for reproducible research and 
practical utility the R package unitModalReg is freely available at https://github.com/AndrMenezes/ 
unitModalReg. As such we envisage that the proposed models will be highly utilized across all relevant 
fields of science.
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Appendix A

Link function misspecification. To check the specification of logit link function in the applications we provide (i) 
empirical plots of logit of response versus each covariate along with the locally estimated scatterplot smoothing (LOESS) 
to indicate the linear relationship between logit of response and covariate and (ii) conducted a formal test inspired by the 
RESET (regression specification error test) introduced by Ramsey (1969) for linear regression models as a general 
misspecification test. It should be mention that misspecification means that the estimated model differs from the true 
data generating process in a way that the former does not provide an accurate description of the latter. Incorrectly 
specified link function is a way of misspecification (Pereira and Cribari-Neto 2014).

Figures 8 and 9, 10 show that the logit of response variables versus the covariates shows an approximately linear 
relationship. For the Birds migration application discussed in subsection 4.3, only the variable distance traveled was 
statistically significant (see the estimates and standard errors in Table 7), the scatterplot shows that the logit of 
proportion of birds that successfully reach the winter grounds have approximately negative linear relationship between 
the distance traveled (in km).

The formal misspecification test is conduct adding powers of the fitted linear predictors as new covariates and testing 
the significance of estimated parameters. In a correct specified link function, the estimated parameters could not be 
statistically significant. Here, we include the square of fitted linear predictor and use Wald test to check the significance. 
The results in Table 9 indicate a possible misspecification of link function for the UGz in applications 4.1 and 4.2, for 
Beta in application 4.2 and UGa in application 4.3.

Figure 8. Logit of response variable (anxiety) versus covariate stress. The blue line represents the LOESS – Application 4.1.

Table 9. P-values of Wald tests for the covariate square linear predictor adding in the 
model to check the assumption of link function.

Application Beta UGz UGa Kum

4.1 0.1566 0.0750 0.1124 0.2484
4.2 0.0389 0.0017 0.1824 0.3524
4.3 0.4335 0.6082 0.0087 0.8384
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Figure 10. Logit of response variable (proportion of birds that reach the winter) versus covariate distance. The blue line represents 
the LOESS – Application 4.3.

Figure 9. Logit of response variable (proportion of votes) versus covariate MHDI colored by state. The lines represent the LOESS – 
Application 4.2.
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