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Abstract
Over the last decades, the challenges in applied regression have been changing
considerably, and full probabilistic modeling rather than predicting just means is
crucial in many applications. Motivated by two applications where the response
variable is observed on the unit-interval and inflated at zero or one, we propose
a parametric quantile regression considering the unit-Weibull distribution. In
particular, we are interested in quantifying the influence of covariates on the
quantiles of the response variable. The maximum likelihood method is used for
parameters estimation. Monte Carlo simulations reveal that the maximum like-
lihood estimators are nearly unbiased and consistent. Also, we define a residual
analysis to assess the goodness of fit.
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1 INTRODUCTION

Frequently, in real life data, fractions, rates, or proportions data contain zeros and/or ones. Therefore, the study of models
to model data observed on the intervals [0, 1) or (0, 1] motivates a novel research branch with many practical applications,
such asmodeling the corporate capital structure decisions (Cook,Kieschnick,&McCullough, 2008), themortality in traffic
accidents (Ospina & Ferrari, 2012), the relative payment amount (Pereira, Botter, & Sandoval, 2013), the proportion of
households with access to electricity (Santos & Bolfarine, 2015), leverage ratios (Bayes &Valdivieso, 2016), and Parkinson’s
disease (Di Brisco & Migliorati, 2020). In such cases, the usual linear models are not suitable for modeling these data.
In this context, for independent data, Ospina and Ferrari (2008) proposed inflated beta distributions as natural alter-

natives to the beta distributions for modeling data observed in [0, 1), (0, 1], or [0, 1]. Recently, Cribari-Neto and Santos
(2019) established the inflated Kumaraswamy distributions. In order to accommodate explanatory variables in the model-
ing, Hoff (2007) introduced the one-inflated beta model. Cook et al. (2008) considered the beta regression models inflated
at zero. Ospina and Ferrari (2012) proposed a general class of regression models for continuous proportions when the
data contain zeros or ones. Santos and Bolfarine (2015) introduced zero-or-one inflated quantile model by considering
suitiable transformation under the well known Koenker and Bassett (1978) quantile regression. These authors consid-
ered the formulation using the assymetric Laplace distribution discussed by Koenker and Machado (1999) in order to
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performed Bayesian inference. More recently, Liu, Kam Yuen, Wu, Tian, and Li (2020) studied the zero-or-one inflated
simplex regression models for the analysis of continuous proportion data.
A substantial number of practical and theoretical studies have focused on the use of the mean reparameterized beta

distribution (or its generalizations) as an integral of the model. However, it is well known that the widely popular
mean regression model could be inadequate if the probability distribution of the observed responses do not follow a
symmetric or multimodal distribution (Morales, Lachos, Cabral, & Cepero, 2017). Quantile regression, introduced by
Koenker and Bassett (1978), is a very useful model for data analysis, and is an alternative approach to investigate the
relationship between a response variable and covariates, in this context, that is, quantile regression is useful when the
rate of change in the conditional quantile, expressed by the regression coefficients, depends on the quantile. There are
advantages to using quantile regression, such as the robustness to outliers, and can be more intuitive than the mean,
especially for skewed distributions. According to Bayes, Bazán, and De Castro (2017), the main advantage of the quan-
tile regression is its flexibility for modeling data with heterogeneous conditional distributions. Furthermore, in con-
trast to the mean regression model, quantile regression can provide an overall assessment of the covariate effects at
different quantiles.
Noufaily and Jones (2013) explored a parametric approach to quantile regression, where the positive response vari-

able, whose conditional distribution is modeled by the generalized gamma distribution. Bayes et al. (2017) studied a new
quantile parametric mixed regression model for bounded response variables considering the Kumaraswamy distribution.
Nascimento and Bourguignon (2020) defined and studied the quantile regression model in which the response variable
is a generalized extreme value distribution. Sánchez, Leiva, Galea, and Saulo (2020) considered the Birnbaum–Saunders
quantile regression model. Lemonte andMoreno-Arenas (2020) introduced a novel parametric quantile regression model
for limited range response variables based on Johnson-t distribution. Furthermore, literature does exist on censored quan-
tile regression models (Buchinsky & Hahn, 1998; Powell, 1986). Santos and Bolfarine (2015) proposed the use of Bayesian
quantile regression for the analysis of proportion data present in a zero-or-one inflation using a two-part model approach.
However, in the proposed model, the asymmetric Laplace distribution is assumed in the likelihood calculation. In this
case, the approach based on a pseudo-likelihood through an asymmetric Laplace distribution (Yang, Wang, & He, 2016),
and the conditional distribution of the response variable is unknown. Despite this, to the best of our knowledge, a specific
parametric quantile regressionmodel to describe data observed on the intervals [0, 1) or (0, 1] at different levels (quantiles)
has never been considered in the literature.
Unfortunately, the cumulative distribution function (c.d.f.) of the beta distribution does not have an invertible closed

form, which hinders its utilization with quantile regression purposes. In contrast to the beta distribution, the unit-Weibull
(UW) distribution (Mazucheli, Menezes, Fernandes, Oliveira, & Ghitany, 2020) has a closed-form expression for the quan-
tile function. The UW distribution, with support on the unit interval, was proposed by Mazucheli, Menezes, and Ghitany
(2018). Recently, Mazucheli et al. (2020) proposed a parametric approach of quantile regression for limited range response
variables. For this, Mazucheli et al. (2020) used a simple parameterization of UW distribution that is indexed by quantile
and shape parameters.
Based on the above discussion, the main aim of this paper is to propose a parametric quantile regression model that

is tailored for situations where the response variable is measured continuously on the intervals [0, 1) or (0, 1] based on
reparameterized UW distribution (Mazucheli et al., 2020). In particular, the proposed model assumes that the response
variable has a mixed continuous-discrete distribution with probability mass at zero or one. The reparameterized UW
distribution (Mazucheli et al., 2020) is used to describe the continuous component of the model, since its density has
a wide range of different shapes depending on the values of the two parameters that index the distribution. The quan-
tile regression quantifies the association of the explanatory variables with a quantile of a dependent variable where
the response variable is measured continuously on the intervals [0, 1) or (0, 1]. In fact, quantile regression is capa-
ble of providing a more complete statistical analysis of the stochastic relationships among random variables than the
usual mean regression model. All the models cited above are not suitable for capturing this. Furthermore, the mixture
parameter is modeled as functions of regression parameters. In the applications (this analysis is discussed in Section 5),
note that the both data sets are asymmetry. In these cases, the mean is pulled in the direction of the tail, making it a
less representative measure of central tendency. Thus, we will use of the proposed quantile model for fitting these two
data sets.
This paper is organized as follows. Section 2 presents formulation of the zero-or-one inflated UW quantile regres-

sion model. In Section 3, the estimation method for the model parameters and diagnostic measures are discussed.
Monte Carlo experiments regarding the parameter estimates and the empirical distribution of the residuals are pre-
sented with a discussion of the results in Section 4. In Section 5, we discuss an application to real data that
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demonstrates the usefulness of the proposed quantile regression model. Finally, in Section 6, we mention some
concluding remarks.

2 ZERO-OR-ONE INFLATED UNIT-WEIBULL QUANTILE REGRESSIONMODELS

In a recent paper, Mazucheli et al. (2020) proposed a new parametric approach of quantile regression for limited range
response variables. The regression model is based on the UW distribution, which was obtained by Mazucheli et al. (2018)
as a transformation of a random variable with Weibull distribution. The probability density function (p.d.f.) and c.d.f. of
the UW distribution re-parametrized in terms of the 𝜏-th quantile are given, respectively, by

𝑓(𝑦 ∣ 𝜇, 𝜙, 𝜏) =
𝜙

𝑦

(
log 𝜏

log 𝜇

)(
log 𝑦

log 𝜇

)𝜙−1

𝜏

(
log 𝑦

log 𝜇

)𝜙

, 0 < 𝑦 < 1 (1)

and

𝐹(𝑦 ∣ 𝜇, 𝜙, 𝜏) = 𝜏

(
log 𝑦

log 𝜇

)𝜙

, 0 < 𝑦 < 1, (2)

where 𝜇 ∈ (0, 1) is the 𝜏-quantile of 𝑦, that is, the location parameter and 𝜙 > 0 is the shape parameter.
The flexibility and advantage of the proposed quantile regression to model data in the unit interval were shown by the

authors based on real applications and simulation studies (Mazucheli et al., 2020). However, the UW quantile regression
model is not appropriate when the response variable contains observations at the extremes, either zeros or ones. In such
situations, the underlying data generating process includes a discrete component that causes a given value (zero or one)
to be observed with positive probability. Thus, a natural and well-known solution to combine the continuous and discrete
data generating mechanisms into a more general law is to consider a mixture of two distributions.
In this paper, we assume that the continuous mechanism is described by the UW distribution, while the discrete com-

ponent is a degenerate distribution in a known value 𝑐, either zero or one. Under this approach, the c.d.f. of the inflated
UW distribution in 𝑐 is given by

𝐺(𝑦 ∣ 𝜈, 𝜇, 𝜙, 𝜏) = 𝜈 𝟙𝑐(𝑦) + (1 − 𝜈) 𝐹(𝑦 ∣ 𝜇, 𝜙, 𝜏),

where 𝟙𝐴(𝑦) is an indicator function that equals 1 when 𝑦 ∈ 𝐴 and 0when 𝑦 ∉ 𝐴; 𝜈 ∈ (0, 1) is the mixture parameter and
𝐹(𝑦 ∣ 𝜇, 𝜙, 𝜏) is the c.d.f. of theUWdistribution defined in (2). Notice that the random variable𝑌 follows aUWdistribution
with probability 1 − 𝜈 and it follows a degenerate distribution in 𝑐 with probability 𝜈.
The corresponding p.d.f. of the inflated UW distribution in 𝑐 is given by

𝑔(𝑦 ∣ 𝜈, 𝜇, 𝜙, 𝜏) =

{
𝜈 if 𝑦 = 𝑐

(1 − 𝜈) 𝑓(𝑦 ∣ 𝜇, 𝜙, 𝜏) if 𝑦 ∈ (0, 1),
(3)

where 𝑓(𝑦 ∣ 𝜇, 𝜙, 𝜏) is the density of the UW distribution defined in (1). If 𝑐 = 0, the density (3) is called zero-inflated UW
distribution, and if 𝑐 = 1 the density (3) is called one-inflated UW distribution. It should be mentioned that this approach
for construction of inflated parametric distributions limited in the unit interval was considered in Ospina and Ferrari
(2008) and Cribari-Neto and Santos (2019).
Now we can formulate a general class of zero-or-one inflated UW quantile regression model. Let 𝑦1, … , 𝑦𝑛 be an inde-

pendent random variable such that each 𝑦𝑖 , for 𝑖 = 1, … , 𝑛 has p.d.f. defined in (3) for a fixed (known) probability 𝜏 ∈ (0, 1)

associated with quantile of interest. We assume that the parameters 𝜇𝑖 and 𝜈𝑖 satisfy the following functional relations:

ℎ1(𝜇𝑖) = 𝐱⊤
𝑖
𝜷(𝜏) and ℎ2(𝜈𝑖) = 𝐰⊤

𝑖
𝜶, 𝑖 = 1, … , 𝑛, (4)

where 𝜷(𝜏) = (𝛽0(𝜏), … , 𝛽𝑝−1(𝜏))
⊤ and 𝜶 = (𝛼0, … , 𝛼𝑞−1)

⊤ are vectors of unknown regression coefficients, which are
assumed to be functionally independent, such that 𝜷(𝜏) ∈ ℝ𝑝 and 𝜶 ∈ ℝ𝑞 with 𝑝 + 𝑞 < 𝑛. Also, 𝐱⊤

𝑖
= (1, 𝑥𝑖1, … , 𝑥𝑖(𝑝−1))

and𝐰⊤
𝑖
= (1, 𝑤𝑖1, … ,𝑤𝑖(𝑞−1)) are observations on 𝑝 and 𝑞 known covariates, respectively. Moreover, we assume that the
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link functions ℎ1(⋅) ∶ (0, 1) → ℝ and ℎ2(⋅) ∶ (0, 1) → ℝ are strictly monotonic and twice differentiable. The main link
functions for 𝜇 and 𝜈 are:

(i) logit: 𝑔(𝜇𝑖) = log(𝜇𝑖∕(1 − 𝜇𝑖));
(ii) probit: 𝑔(𝜇𝑖) = Φ−1(𝜇𝑖), where Φ−1(⋅) is the standard normal quantile function;
(iii) complementary log-log: 𝑔(𝜇𝑖) = log[− log(1 − 𝜇𝑖)].

3 INFERENCE AND DIAGNOSTICS

This section is devoted to discuss inference based on the maximum likelihood method for the parameters of zero-or-
one inflated UW quantile regression models. Finally, we proposed a residual analysis to detect departures from the
assumed distribution.

3.1 Maximum likelihood estimation

For a given 𝜏 ∈ (0, 1), let 𝜽 = (𝜶⊤, 𝜷(𝜏)⊤, 𝜙)⊤ be the vector of unknown parameters to be estimated using the maximum
likelihood method. Following the same idea presented in Ospina and Ferrari (2012) the likelihood function based on a
sample of 𝑛 independent observations of UW quantile regression model inflated at point 𝑐 is given by

𝐿(𝜽 ∣ 𝒚) =

𝑛∏
𝑖=1

𝑔(𝑦𝑖 ∣ 𝜈𝑖, 𝜇𝑖, 𝜙, 𝜏) = 𝐿1(𝜶) 𝐿2(𝜷(𝜏), 𝜙), (5)

where 𝑔(⋅ ∣ 𝜈𝑖, 𝜇𝑖, 𝜙, 𝜏) is the p.d.f. defined in (3),

𝐿1(𝜶) =

𝑛∏
𝑖=1

𝜈
𝟙𝑐(𝑦𝑖)

𝑖
(1 − 𝜈𝑖)

1−𝟙𝑐(𝑦𝑖)

and

𝐿2(𝜷(𝜏), 𝜙) =
∏

𝑖∶𝑦𝑖∈(0,1)

𝑓(𝑦𝑖 ∣ 𝜇𝑖, 𝜙)

with 𝑓(⋅ ∣ 𝜇𝑖, 𝜙) being the p.d.f. of UW distribution defined in (1). The parameters 𝜇𝑖 = ℎ−11 (𝐱⊤
𝑖
𝜷(𝜏)) and 𝜈𝑖 = ℎ−12 (𝐰⊤

𝑖
𝜶)

as defined in (4), are functions of the regression coefficients 𝜷(𝜏) and 𝜶, respectively.
Note that the likelihood function factorizes in two terms: one depending only the 𝜶 (discrete component) and another

one depending only on (𝜷(𝜏), 𝜙)⊤ (continuous component). Thus, according Pace and Salvan (1997) the parameter vectors
are separable, which implies that the maximum likelihood inference for (𝜷(𝜏), 𝜙)⊤ can be performed separately as if 𝜶
were known and vice versa.
The corresponding log-likelihood function is given by

𝓁(𝜽 ∣ 𝒚) = 𝓁1(𝜶) + 𝓁2(𝜷(𝜏), 𝜙),

where

𝓁1(𝜶) =

𝑛∑
𝑖=1

[𝟙𝑐(𝑦𝑖) log(𝜈𝑖) + (1 − 𝟙𝑐(𝑦𝑖)) log(1 − 𝜈𝑖)] (6)

and

𝓁2(𝜷(𝜏), 𝜙) =

𝑛∑
𝑖=1

log

(
𝜙

𝑦𝑖

)
+

𝑛∑
𝑖=1

log

(
log 𝜏

log 𝜇𝑖

)
+ (𝜙 − 1)

𝑛∑
𝑖=1

log

(
log 𝑦𝑖
log 𝜇𝑖

)
+ log(𝜏)

𝑛∑
𝑖=1

(
log 𝑦𝑖
log 𝜇𝑖

)𝛽

. (7)
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It is not possible to derive closed-form expression for the maximum likelihood estimator (MLE) of 𝜽 = (𝜶⊤, 𝜷(𝜏)⊤, 𝜙)⊤.
Therefore, due the separability of 𝜶 and (𝜷(𝜏), 𝜙)⊤, the MLE of 𝜶 are obtained by maximizing the log-likelihood function
of discrete component 𝓁1(𝜶) defined in (6), while the MLEs of (𝜷(𝜏), 𝜙)⊤ are obtained maximizing the log-likelihood
function of the continuous component 𝓁2(𝜷(𝜏), 𝜙) defined in (7). Numerical algorithms such as Newton–Raphson and
quasi-Newton can be used.
The main advantage of the proposed model under the alternatives in literature is the ability to provide reasonable

estimates for the quantiles of response variable. For instance, if the response variable is one-inflated, an estimate of the
𝜏th quantile would be

𝑦𝜏th =

{
𝐹
(
𝜏(1 − 𝜈𝑖)

−1
∣ 𝜇𝑖, 𝜙, 𝜏

)
if 1 − 𝜈𝑖 ≥ 𝜏

1 if 1 − 𝜈𝑖 < 𝜏,

where𝜇𝑖, 𝜙, and 𝜈𝑖 are theMLEs of𝜇𝑖, 𝜙, and 𝜈𝑖 , respectively, obtained in theUWone-inflated 𝜏-quantile regressionmodel.
This interesting feature allows a complete view of the conditional distribution of response variable in real applications
rather than predicting just the mean (see Section 5.2).
Under suitable regularity conditions (see Cox & Hinkley, 1974, p. 107), the asymptotic distribution of the MLE 𝜽 is a

multivariate Normal distribution with mean 𝜽 and covariance matrix 𝚺(𝜽), which can be consistently estimated by the
inverse of the observed Fisher information matrix, given by

𝚺̂
(
𝜽
)
=

[
−
𝜕 𝓁(𝜽 ∣ 𝒚)

𝜕𝜽 𝜕𝜽⊤

]−1
evaluated at 𝜽 = 𝜽.
Let 𝜃𝑟, 𝑟 = 1, 2, … , 𝑝 + 𝑞 + 1, be the r-th component of 𝜽. The asymptotic 100(1 − 𝛿)% confidence interval for 𝜃𝑟 is given

by

𝜃𝑟 ± 𝑧𝛾∕2 se
(
𝜃𝑟

)
, 𝑟 = 1, … , 𝑝 + 𝑞 + 1,

where 𝑧𝛿∕2 is the 𝛿∕2 upper quantile of the standard normal distribution and se(𝜃𝑟) is the asymptotic standard error of 𝜃𝑟.
Note that se(𝜃𝑟) is the square root of the r-th diagonal element of the matrix 𝚺̂(𝜽).
In the next section, we evaluated the finite-sample behavior of the MLEs 𝜽 of 𝜽 with respect to bias, consistency, and

probability coverage of the asymptotic interval.

3.2 Randomized quantile (RQ) residuals

To evaluate and detect departures from the underlying inflated UW quantile regression model assumption, we propose to
use the RQ residuals introduced by Dunn and Smyth (1996). It is defined as

𝑟̂𝑖 = Φ−1(𝑢𝑖), 𝑖 = 1, … , 𝑛,

where Φ(⋅) is the standard normal distribution function and 𝑢𝑖 is a uniform random variable [𝑎𝑖, 𝑏𝑖], where the range
depends on the inflation of the model. In the zero-inflated UW quantile regression, 𝑢𝑖 is a uniform random variable on
(0, 𝜈𝑖] if 𝑦𝑖 = 0 and 𝑢𝑖 = 𝐺(𝑦𝑖 ∣ 𝜈𝑖, 𝜇𝑖, 𝜙, 𝜏) if 𝑦𝑖 ∈ (0, 1). In the one-inflated UWquantile regression, 𝑢𝑖 is a uniform random
variable on [𝜈𝑖, 1) if 𝑦𝑖 = 1 and 𝑢𝑖 = 𝐺(𝑦𝑖 ∣ 𝜈𝑖, 𝜇𝑖, 𝜙, 𝜏) if 𝑦𝑖 ∈ (0, 1). Apart from the variability due to the estimates of the
parameters these residuals have standard normal distribution if the proposedmodel is correctly specified (Dunn& Smyth,
1996).
From the residuals, we can examine several graphics to detect departures from the model assumptions. For instance,

the plot of the residuals versus the index of observations can be useful to detect patterns related of time. Link function
misspecification can be revealed if a trend appears in the plot of residuals against predictors. The half-normal plot with a
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TABLE 1 Average Monte Carlo proportion of zeros according to sample size and scenario

𝒏 Scenario I Scenario II
30 0.3084 0.4535
50 0.3114 0.4949
100 0.3117 0.5035
150 0.3106 0.4825
300 0.3109 0.4966

simulated envelope proposed by Atkinson (1981) is also a helpful diagnostic tool. Simulation studies are presented in the
next section concerning the empirical distribution of the proposed residuals.

4 SIMULATION STUDIES

In this section, we conducted simulation studies (i) to evaluate the finite-sample behavior of the maximum likelihood
estimates of the regression coefficients and (ii) to investigate the empirical distribution of the RQ residuals proposed.
Additionally, we evaluate the parameter estimates and residuals by inspecting five quantiles levels, namely, the first decile
(𝜏 = 0.10), the first quartile (𝜏 = 0.25), the median (𝜏 = 0.50), the third quartile (𝜏 = 0.75), and the last decile (𝜏 = 0.90).
As discussed in (5) the maximum likelihood estimation can be performed separately, hence, without loss of generality,

the zero-inflated UW quantile regression was considered.
The following scenarios are considered:

(a) Scenario I:

ℎ1(𝜇𝑖) = log

(
𝜇𝑖

1 − 𝜇𝑖

)
= 𝛽0(𝜏) + 𝛽1(𝜏) 𝑥1𝑖,

ℎ2(𝜈𝑖) = log

(
𝜈𝑖

1 − 𝜈𝑖

)
= 𝛼0 + 𝛼1 𝑤1𝑖, 𝑖 = 1, … , 𝑛,

where the true values of the parameters were taken as 𝛽0(𝜏) = 1.0, 𝛽1(𝜏) = 2.0, 𝛼0 = −1.0, and 𝛼1 = 0.4, and the true
value of the shape parameter is taken as 𝜙 = 2.0. The covariate values of 𝑥1𝑖 were generated from the standard normal
distribution, while the values of 𝑤1𝑖 were drawn from the standard uniform distribution.

(b) Scenario II:

ℎ1(𝜇𝑖) = log

(
𝜇𝑖

1 − 𝜇𝑖

)
= 𝛽0(𝜏) + 𝛽1(𝜏) 𝑥1𝑖 + 𝛽2(𝜏) 𝑥2𝑖 + 𝛽3(𝜏) 𝑥3𝑖,

ℎ2(𝜈𝑖) = log

(
𝜈𝑖

1 − 𝜈𝑖

)
= 𝛼0 + 𝛼1 𝑤1𝑖 + 𝛼2 𝑤2𝑖, 𝑖 = 1, … , 𝑛,

where the true values of the parameters were taken as 𝛽0(𝜏) = −2.0, 𝛽1(𝜏) = 1.0, 𝛽1(𝜏) = 2.0, 𝛽3(𝜏) = 2.0, 𝛼0 =

2.0, 𝛼1 = −4.0, 𝛼2 = 1.0, and 𝜙 = 2.0. The covariate values of 𝑥1𝑖 and 𝑥2𝑖 were generated from two independent stan-
dard normal distribution, 𝑥3𝑖 were generated from Bernoulli distribution with probability of success equal 0.5, while
the values of 𝑤1𝑖 and 𝑤2𝑖 were drawn from the standard uniform and standard Normal distributions, respectively.

In all scenarios, the sample sizewere𝑛 = 30, 50, 100, 150, 300, and the covariate valueswere remained constant through-
out the simulations. It should be mentioned that the proportion of zeros varies according to each Monte Carlo simulation
and sample size. Table 1 shows the average Monte Carlo proportion of zeros according to each sample size and scenario.
All simulations were conducted in SAS using the quasi-Newton algorithm available in the NLMIXED procedure (SAS,

2010) to obtain the maximum likelihood estimates.



MENEZES et al. 7

TABLE 2 Estimated RB, relative RMSE, and coverage probability for 𝛼0 and 𝛼1
𝒏 RB RMSE CP𝟗𝟓%

𝜶𝟎 𝜶𝟏 𝜶𝟎 𝜶𝟏 𝜶𝟎 𝜶𝟏

30 0.1685 0.4431 0.9997 16.7647 0.9665 0.9610
50 0.0866 0.2406 0.4333 8.6916 0.9550 0.9545
100 0.0442 0.1751 0.2173 4.0396 0.9575 0.9505
150 0.0243 0.1012 0.1333 2.3852 0.9600 0.9561
300 0.0141 0.0522 0.0657 1.1561 0.9570 0.9544

TABLE 3 Estimated RB, relative RMSE, and coverage probability for 𝛼0, 𝛼1, and 𝛼2
𝒏 RB RMSE CP𝟗𝟓%

𝜶𝟎 𝜶𝟏 𝜶𝟐 𝜶𝟎 𝜶𝟏 𝜶𝟐 𝜶𝟎 𝜶𝟏 𝜶𝟐

30 4.4392 3.9265 5.2550 543.2916 454.9435 641.9376 0.9686 0.9738 0.9648
50 0.7536 0.6948 0.6943 92.3060 85.0467 70.2188 0.9702 0.9686 0.9772
100 0.0527 0.0507 0.0691 0.1400 0.1135 0.0607 0.9680 0.9550 0.9640
150 0.0294 0.0266 0.0343 0.0801 0.0580 0.0360 0.9550 0.9620 0.9600
300 0.0198 0.0217 0.0163 0.0373 0.0301 0.0173 0.9450 0.9510 0.9420

For each combination of 𝑛, 𝜏, and scenario, the Monte Carlo experiment was repeated 10,000 times.

4.1 Parameter estimation

The aim of the simulation study presented in this subsection is to examine the small sample properties of the MLE pre-
viously described. For such evaluation, the estimated relative bias (RB), the estimated relative root-mean squared error
(RMSE), and the coverage probability of 95% confidence interval (CP95%) were computed.
For a given simulated data set, the estimates of 𝜶 do not depend on 𝜏, hence the above criteria were aggregate, on

average, across all Monte Carlo simulations and all values of 𝜏, as shown in Tables 2 and 3.
The results of the simulation experiments for Scenario I are presented in Figure 1 and Table 2. From these figures and

tables we can observe the following:

(i) the intercept parameter presents higher RB and relative RMSE than 𝛽1(𝜏) for all quantiles, especially in the right tails
of the distribution (𝜏 = 0.75 and 0.90);

(ii) the 𝛽1(𝜏) parameter presents high RB for 𝜏 = 0.75 and 0.90;
(iii) the shape parameter, 𝜙, has high RB in small sample sizes, but it is not affected by the quantiles;
(iv) the coverage probability of the 95% confidence intervals of parameter𝛽0(𝜏) are far from to the nominal level, especially

for small sample size (𝑛 = 30 and 50) and tail quantiles (𝜏 = 0.10 and 0.90);
(v) for small sample size, parameters 𝛼0 and 𝛼1 present higher RB and relative RMSE. As expected by the asymptotically

theory the estimators are unbiased and consistent, as sample size increases;
(vi) the coverage probability for 𝛼0 and 𝛼1 are higher than the nominal level for small sample size.

The results of the simulation experiments for Scenario II are presented in Figure 2 and Table 3. The same comments
for Scenario I hold for Scenario II. However, it should interesting to mention that

(i) parameters 𝛽1(𝜏) and 𝛽2(𝜏) show lesser RB and relative RMSE than parameters 𝛽0(𝜏) and 𝛽3(𝜏), where the latter
represent effect of dummy variable.

(ii) From these figures and tables, It can be seen that as proportion of zero increases the RB and the relative RMSE become
bigger (for 𝛽(𝜏)) for all quantiles, that is, the proportion of zero can influence the performance of the model.
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F IGURE 1 Estimated RB, relative RMSE, and coverage probability for 𝛽0, 𝛽1, and 𝜙

F IGURE 2 Estimated RB, relative RMSE, and coverage probability for 𝛽0, 𝛽1, 𝛽2, 𝛽3, and 𝜙

4.2 Residuals

In this subsection, we consider Monte Carlo experiments regarding the finite-sample behavior of the RQ residuals. The
evaluation of the RQ residuals was based on the normal probability plots of the mean order statistics and descriptive mea-
sures.
Tables 4 and 5 reported the mean, standard deviation (StdDev), skewness (Skew), and kurtosis (Kurt) of RQ residuals.

The descriptive measures of the RQ residuals are close to the theoretical true values of the standard normal distribution
for all scenarios, that is, the residuals have approximately zero mean and unit standard deviation, have skewness close to
zero, and the kurtosis is near three.
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TABLE 4 Descriptive measures of the randomized quantile residuals—Scenario I

𝒏 𝝉 Mean StdDev Skew Kurt
30 0.10 0.00208 1.0079 0.0113 3.2749

0.25 0.00362 1.0068 0.0153 3.2757
0.50 0.00289 1.0077 0.0181 3.2750
0.75 0.00268 1.0076 0.0222 3.2730
0.90 0.00171 1.0079 0.0210 3.2888

50 0.10 0.00157 1.0045 0.0075 3.1492
0.25 0.00199 1.0045 0.0084 3.1531
0.50 0.00153 1.0054 0.0070 3.1619
0.75 0.00173 1.0046 0.0117 3.1618
0.90 0.00113 1.0040 0.0152 3.1636

100 0.10 0.00107 1.0016 0.0023 3.0755
0.25 0.00118 1.0016 0.0042 3.0704
0.50 0.00068 1.0026 0.0014 3.0742
0.75 0.00069 1.0024 0.0027 3.0761
0.90 0.00079 1.0016 0.0052 3.0797

150 0.10 0.00095 1.0005 0.0021 3.0429
0.25 0.00073 1.0011 0.0000 3.0475
0.50 0.00052 1.0012 0.0023 3.0400
0.75 0.00034 1.0014 0.0019 3.0435
0.90 0.00033 1.0013 0.0014 3.0499

300 0.10 0.00028 1.0006 0.0001 3.0241
0.25 0.00042 1.0006 0.0008 3.0229
0.50 0.00036 1.0007 0.0012 3.0218
0.75 0.00042 1.0006 0.0018 3.0216
0.90 0.00055 1.0005 0.0008 3.0282

Normal probability plots of the mean order statistics of RQ residuals are presented in Figures 3 and 4. It is observed
that the residuals have good agreement with the standard normal distribution. Thus, we recommend the use of the RQ
residual to check the goodness of fit of the proposed quantile regression model.
Figure 5 provides an example of a residual plot for simulated data sets considering various values of 𝜏 and 𝑛.

5 MOTIVATING EXAMPLES

To evaluate the applicability of the proposed model, two real data sets with inflation in zero and one are considered. The
two data sets have been taken from the recent book of Korosteleva (2019). As mentioned by the author the source of the
data sets came from consulting projects, which she had involved.
Figure 6 shows the empirical cumulative distribution of the two response variables, the proportion of biked to campus

data (left) and proportion of survived trees (right), respectively. It is observed that there is a considerable inflation of zeros
and ones for the proportion of biked to campus data (left) and proportion of survived trees (right), respectively.
To identify the best subset of regressors, we employed the exhaustive search procedure that enumerates all possible

subsets of regressions and evaluates the models in terms of criterion functions (AIC and BIC), residual analysis, and
predictors of significance. Since both applications have four covariates and the zero-or-one UW quantile regressionmodel
has two components (discrete and continuous), there are (24)2 − 1 = 225 subsets of regressors. Instead evaluate themodels
for several quantiles the median was chosen. All computations were performed in R software and the time elapsed to fit
all models were 2.5 s per applications. An R package can be installed from https://github.com/AndrMenezes/uwquantreg
to fit the models.

https://github.com/AndrMenezes/uwquantreg
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F IGURE 3 Normal probability plots of the mean order statistics for various values of 𝜏 and 𝑛—Scenario I

F IGURE 4 Normal probability plots of the mean order statistics for various values of 𝜏 and 𝑛—Scenario II
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TABLE 5 Descriptive measures of the randomized quantile residuals—Scenario II

𝒏 𝝉 Mean StdDev Skew Kurt
30 0.10 0.00410 1.0128 0.0835 3.3033

0.25 0.00411 1.0111 0.1004 3.2969
0.50 0.00012 1.0109 0.0872 3.3512
0.75 −0.00527 1.0067 0.1102 3.3228
0.90 −0.01099 1.0022 0.1019 3.3563

50 0.10 0.00694 1.0038 0.0457 3.1769
0.25 0.00022 1.0099 0.0458 3.1714
0.50 0.00136 1.0054 0.0557 3.1613
0.75 0.00066 1.0047 0.0617 3.1735
0.90 −0.00604 1.0016 0.0417 3.2079

100 0.10 0.00092 1.0034 0.0250 3.0733
0.25 −0.00027 1.0053 0.0190 3.0777
0.50 0.00093 1.0028 0.0210 3.0911
0.75 0.00071 1.0009 0.0213 3.0971
0.90 −0.00584 1.0014 0.0217 3.1021

150 0.10 0.00202 1.0000 0.0170 3.0590
0.25 0.00030 1.0043 0.0080 3.0458
0.50 −0.00196 1.0037 0.0131 3.0512
0.75 −0.00221 1.0031 0.0093 3.0526
0.90 −0.00272 0.9982 0.0152 3.0666

300 0.10 0.00004 1.0023 −0.0005 3.0221
0.25 −0.00103 1.0017 0.0037 3.0198
0.50 −0.00204 1.0018 0.0030 3.0287
0.75 −0.00033 1.0014 0.0032 3.0252
0.90 −0.00193 1.0014 −0.0006 3.0381

TABLE 6 Descriptive statistics of response variable according to the covariate

Status 𝒏 Mean Median Std. 𝒚 = 𝟎 Parking 𝒏 Mean Median Std. 𝒚 = 𝟎

Faculty 23 0.36 0.33 0.38 0.43 6 20 0.40 0.28 0.36 0.30
Staff 12 0.24 0.17 0.25 0.33 9 19 0.34 0.25 0.35 0.37
Student 25 0.29 0.23 0.31 0.40 12 21 0.20 0.00 0.26 0.52
Gender 𝑛 Mean Median Std. 𝑦 = 0 Distance 𝑛 Mean Median Std. 𝑦 = 0

Female 30 0.32 0.23 0.32 0.33 [1; 2) 6 0.53 0.51 0.24 0.00
Male 30 0.30 0.20 0.34 0.47 [3; 5) 16 0.46 0.51 0.29 0.19

[6; 7) 11 0.40 0.33 0.32 0.18
[8; 15) 15 0.23 0.00 0.36 0.53
[16; 60) 12 0.01 0.00 0.04 0.92

5.1 Inflation of zeros: Transport in campus data

This data set is regarding the mode of transportation in a campus. According to Korosteleva (2019), a stratified sample
of 60 respondents was drawn for the purpose of oversampling people who sometimes bike to campus. In this analysis,
the interest lies in analyzing the association between the proportion of time a respondent biked to campus and a person’s
status (student/faculty/staff) and gender (F/M), duration of parking permit (6, 9, or 12 months) and distance to campus.
There are 24 (40%) respondents who never biked to campus. Table 6 presents some descriptive statistics according to

the covariates. It is observed that the median of the response variable is less than the mean for all levels of covariates,
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F IGURE 5 Examples of a residual plot for simulated data sets for various values of 𝜏 and 𝑛 considering the model from Scenario II

F IGURE 6 Empirical cumulative
distribution function of the response
variables

expect for distance between 3 and 5. Furthermore, it is observed that the proportion of zero (𝑦 = 0) is different across the
levels of covariates.
The following model was selected:

logit(𝜇𝑖) = 𝛽0 + 𝛽1male𝑖 + 𝛽2 parking𝑖 + 𝛽3 staff𝑖 + 𝛽4 student𝑖 ,

logit(𝜈𝑖) = 𝛼0 + 𝛼1male𝑖 + 𝛼2 distance𝑖 , 𝑖 = 1, … , 60,

where the status is transformed in dummy variables, staff and student, with the faculty level as reference.
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TABLE 7 Parameter estimates, standard errors (S.E.), and p-value for zero-inflated UWmedian regression

Model Parameter Estimate S.E. p-value
Median Intercept 3.1339 1.2357 0.0112

Male 0.8592 0.3146 0.0063
Parking −0.2914 0.1281 0.0230
Staff −1.1511 0.4346 0.0081
Student −1.6803 0.5328 0.0016
𝜙 1.5143 0.1982 —

Zero-inflated Intercept −4.4897 1.2454 0.0003
Male 1.7728 0.8797 0.0439
Distance 0.3396 0.0970 0.0005

F IGURE 7 Randomized quantile residuals with simulated envelope for different 𝜏

The parameter estimates, standard errors, and p-value for the zero-inflated UWmedian regression are shown in Table 7.
It is noteworthy that as the distance to campus increases, the probability of people to bike to campus decreases. Also, men
biked to campus lesser thanwomen, in fact for a fixed distance the odds thatmenbiked to campus decrease in e𝛼̂1 = 5.8871.
These results corroborate to the descriptive analysis presented in Table 6.
The results from median regression indicate that all covariates are statistically significant and the variables parking,

staf,f and student have a negative effect on the response variable. This means, for example, that as the duration of parking
increases, the proportion of people who biked to campus decreases, also student biked to campus lesser than faculty,
on median.
To check the model assumption, the residual plots with a simulated envelope for different quantiles are presented in

Figure 7. From these results, we can conclude that the proposed model provided a good fit for this data set.
Figure 8 displays the parameter estimates and their 95% confidence interval for the parameters of continuous part

assuming different values for the quantiles. It is observed that all coefficients, except the intercept, became close to zero
as the quantile level increases, indicating that these variables are more important to explain smaller quantiles. Although
the coefficients increase, they decrease in magnitude.
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F IGURE 8 Parameter estimates and 95% confidence intervals for 𝜏 = 0.05, … , 0.95 by 0.05

TABLE 8 Parameter estimates, standard errors (S.E.), and p-value for one-inflated UWmedian regression

Model Parameter Estimate S.E. p-value
Median Intercept 3.0182 1.2015 0.0120

Pest 0.4153 0.1095 0.0001
Fert 1.0095 0.1772 0.0001
Precip −0.0906 0.0302 0.0027
Wind −0.2635 0.0722 0.0003
𝜙 1.8683 0.3615 —

One-inflated Intercept 3.3183 2.3526 0.1584
Wind −0.4671 0.2535 0.0654

5.2 Inflation of ones: Mortality of young trees data

In this application we consider the data set described by Korosteleva (2019) related to a study conducted in 2 years on
mortality of young trees planted in parks. The goal is to describe the association between the proportion of survived trees
in 2 years and some climatological variables (average annual precipitation (in inches), and average annual wind speed (in
miles per hour)) and soil variables (frequencies of pest control and soil fertilization). The number of parks investigated
are 26, and in six (23%) all trees have survived.
The selected model is given by

logit(𝜇𝑖) = 𝛽0 + 𝛽1 pest𝑖 + 𝛽2 fert𝑖 + 𝛽3 precip𝑖 + 𝛽4wind𝑖

logit(𝜈𝑖) = 𝛼0 + 𝛼1wind𝑖 ,

for 𝑖 = 1, … , 26.
Table 8 gives the parameter estimates, standard errors, and p-values for the one-inflated UWmedian regression. For the

probability of the proportion being equal to one, that is, all trees survived in 2 years we observed that the average annual
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F IGURE 9 Randomized quantile residuals with simulated envelope for different 𝜏

wind speed has a negative impact, which implies that as the average annual wind speed increases the probability of all
trees survived in 2 years decreases.
For the continuous part, it is observed that all parameters are statistically significant. It is also interesting to observe

that the estimated coefficient for precipitation (𝛽3) implies that higher rainfall is associated with a decrease in the median
survival rate of young trees. The effect is analogous for the wind covariate. On the other hand, the estimated coefficients
for pest control (𝛽1) and soil fertilization (𝛽2) indicate that places with higher frequencies of these variables increase the
median survival rate of young trees.
To check the model assumption we presented in Figure 9 the RQ residuals with simulated envelope for different quan-

tiles. The results indicate no departures about the model assumptions.
Figure 10 shows that the UW quantile regression is more informative than the usual conditional mean regression.

A close inspection of the results reveals that the effects of average annual precipitation (𝛽3) and average annual wind
speed (𝛽4) increase for higher quantiles, while, the effects of frequencies of pest control and soil fertilization decrease for
higher quantiles.
Finally, a question of interest in this application is to predict the proportion of trees that would survive for 2 years in two

specific areas, where neither pest control nor soil fertilizationwould be feasible. The goal is to decide between an areawith
lower precipitation (2 in) and stronger winds (12.5 mph), and an area with higher precipitation (25 in) and lower winds
(6 mph). Thus, based on the fitted models (for various 𝜏), we can estimate the quantiles and obtain a more informative
view of the conditional distribution of the proportion of the survived trees. The results displayed in Figure 11 support the
decision in favor of the area with higher precipitation and lower wind, since the estimated quantiles increase faster as
𝜏 increases.

6 DISCUSSION AND CONCLUSION

Motivated by the presence of zeros or ones in proportion responses, we develop a parametric quantile regressionmodel for
double bounded response variables. Our model is built on the reparameterized UW distribution introduced by Mazucheli
et al. (2020). We extend this model to the case when the proportion data present a considerable number of zeros or ones.
In particular, the proposed model assumes that the response variable has a mixed continuous–discrete distribution with
probabilitymass at zero or one, where the reparameterizedUWdistribution is used to describe the continuous component
of themodel. Inference is based on a frequentist approach, and themaximum likelihood inference is employed to estimate
themodel parameters. Its good performance, in terms of the bias andmean-squared error, has been evaluated bymeans of
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F IGURE 10 Parameter estimates and 95% confidence intervals for 𝜏 = 0.05, … , 0.95 by 0.05

F IGURE 11 Estimated quantiles for two areas

Monte Carlo simulations. Furthermore, we introduce residuals for the proposed model based on the RQ and conducted a
simulation study to establish their empirical properties in order to evaluate its performances. Two applications using real
data sets were presented and discussed. Furthermore, as suggested by the referees, an extension of themethods developed
in this paper would be to consider in (3) a much more general family of distributions; that is, consider models for zero-
inflated and one-inflated data sets. The p.d.f. of the zero-and-one inflated UW distribution is given by

𝑔(𝑦 ∣ 𝜈, 𝜇, 𝜙, 𝜏) =

⎧⎪⎨⎪⎩
𝑙𝜈0 if 𝑦 = 0

(1 − 𝜈0 − 𝜈1) 𝑓(𝑦 ∣ 𝜇, 𝜙, 𝜏) if 𝑦 ∈ (0, 1)

𝜈1 if 𝑦 = 1,

where 𝑓(𝑦 ∣ 𝜇, 𝜙, 𝜏) is the density of the UW distribution defined in (1) and 0 < 𝜈0 + 𝜈1 < 1.
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