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ABSTRACT
The beta model is the most important distribution for fitting data
with theunit interval. However, thebetadistribution is not suitable to
model bimodal unit interval data. In this paper,weproposeabimodal
beta distribution constructed by using an approach based on the
alpha-skew-normal model. We discuss several properties of this dis-
tribution, such as bimodality, real moments, entropies and identifi-
ability. Furthermore, we propose a new regression model based on
the proposed model and discuss residuals. Estimation is performed
by maximum likelihood. A Monte Carlo experiment is conducted to
evaluate the performances of these estimators in finite samples with
a discussion of the results. An application is provided to show the
modelling competence of the proposed distribution when the data
sets show bimodality.
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1. Introduction

The need for modelling and analysing the bimodal bounded data, especially for data on
the unit interval, occurs in many fields of real life, such as bioinformatics [12], image clas-
sification [16], transaction at a car dealership [26] and so on. In such situations, in order to
apply probabilistic modelling for these phenomena, under a parametric paradigm, proba-
bility distributions limited to (0, 1) are indispensable. The unimodal betamodel is themost
widely used model in the literature to describe data in the unit interval, especially because
of its flexibility and fruitful properties [13]. However, despite its broad sense applicabil-
ity in many fields, the beta distribution is not suitable to model bimodal data on the unit
interval.

In general, one uses mixtures of distributions to describe the bimodal data. For exam-
ple, the studies [26] and [25] consider finite mixtures of beta regression models to analyze
the priming effects in judgements of imprecise probabilities. However, in general, mix-
tures of distributions may suffer from identifiability problems in the parameter estimation;
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see Refs. [14,15]. Thus, new mixture-free models which have the capacity to accommo-
date both unimodal and bimodal data are very important. The nature of phenomena can
show bimodality due to many reasons, such as economical policies, uncertainty of social
movement and its effects on the economy [28,30].

Since the structure of phenomena depends on many factors, it is reasonable to expect
that the non-identically distributed data can occur in the data observed by the experi-
menter. For example, bimodality was introduced by Elal-Olivero [8], Domma et al. [6] and
Vila and Çankaya [28] is a necessary probabilistic model to perform an efficient fitting on
the non-identically distributed data set or the mixed data set. If we have the mixed data
set, the mixed form of Beta and Weibull in Vila and Çankaya [28] should be necessary to
model the data set efficiently, because the mixing proportions π1 and π2 = (1 − π1) in the
bimodal case cannot be estimated accurately. The analytical expression of themixed distri-
bution can lead to problem while the optimization of the maximum likelihood estimation
method according to parameters from parametric models, such as Beta, Weibull, etc. and
the mixing parameters π1 and π2 of Beta from separate populations Beta1 and Beta2 is
performed. At least, we can come across the numerical error while performing computa-
tion. The original working principle of phenomena can depend on the probabilistic model
such as the bimodal beta (Bbeta) or the bimodal Weibull (BWeibull) in Vila and Çankaya
[28]. On the other hand, the parameters in the mixed form of two Beta distributions, i.e.
Beta1 and Beta2, are α1, α2, β1, β2, π1 and π2. However, Bbeta distribution includes four
parameters which are α, β , ρ and δ. Bbeta has less parameters when compared with the
mixed form of Beta. Further, since we have the exact expression for the cumulative distri-
bution function of Bbeta, it is advantageous for us to generate the bimodal artificial data
sets, which can be used to check whether or not a data set in the system can be modelled
by Bbeta with the estimated parameters. In other words, the results and outputs on the unit
interval data can be modelled and tested by using the proposed distribution.

Variations of the beta model can be found in Ferrari and Cribari-Neto [9], Ospina and
Ferrari [21], Bayes et al. [4], Hahn [11], among others. However, all the models cited above
are not suitable for capturing bimodality. Recently, probabilistic models for modelling
bimodality on the positive real line were discussed by various authors. Olmos et al. [20]
introduced recently a bimodal extension of the unit-Birnbaum-Saunders distribution. Vila
et al. [29] proposed the bimodal gamma distribution. Vila and Çankaya [28] considered
a bimodal Weibull distribution. Recently, [17] proposed a family of bimodal distributions
generated by distributions with positive support. Despite this, to the best of our knowl-
edge, a specific parametric model to describe bimodality data observed of the unit interval
has never been considered in the literature recently. Despite this, to the best of our knowl-
edge, a specific regression bimodal model to unit interval data with a regression structure
for the parameters has never been considered in the literature. Martnez-Flrez et al. [18]
considered a transformation in a random variable that follows a unit-bimodal Birnbaum-
Saunders (UBBS for short) distribution only in the case of identically and independently
variables.

Based on the above discussion and motivated by the presence of bimodality in propor-
tion responses, we develop a model for double-bounded response variables. In particular,
we extended the usual beta distribution using a quadratic transformation technique used
to generate bimodal functions [8,28]. The approach, therefore, appears to be a new devel-
opment for the literature. We discuss several properties of the proposed model, such as
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bimodality, real moments, hazard rate, entropies and identifiability. Furthermore, we study
the effects of the explanatory variables on the response variable using a regression model.

In what follows, we list some of the main contributions and advantages of the proposed
model.

• We introduce a new family of distributions that is flexible version of the usual beta dis-
tribution so that it is capable of fitting bimodal as well as unimodal data. We provide
general properties of the proposed model;

• We propose an extended version of the quadratic transformation technique used to
generate bimodal functions;

The rest of the article proceeds as follows. In Sections 2 and 3, we present the new distri-
bution and derive some of its properties. Then in Section 4, we present themain properties
of the bimodal beta, which include entropies, stochastic representation and identifiability.
Section 5 presents the bimodal beta regression model. Also, the estimation method for the
model parameters and diagnostic measures are discussed. In Section 6, some numerical
results of the estimators and the empirical distribution of the residuals are presented with
a discussion of the results. A real-life application related to the proportion of votes that Jair
Bolsonaro received in the second turn of Brazilian elections in 2018 is analysed in Section 7.
Section 8 summarizes the main findings of the paper.

2. The bimodal beta distribution

In this section, the bimodal beta (Bbeta) distribution is introduced and its density is
derived. Moreover, some results on the bimodality properties are obtained. We say that
a random variable (r.v.) X has a Bbeta distribution with parameter vector θ δ = (α,β , ρ, δ),
α > 0,β > 0, ρ � 0 and δ ∈ R, denoted by X ∼ Bbeta(θ δ), if its probability density
function (PDF) is given by

f (x; θ δ) =

⎧⎪⎨
⎪⎩

ρ + (1 − δx)2

Z(θ δ)B(α,β)
xα−1 (1 − x)β−1, 0 < x < 1,

0, otherwise,
(1)

where

Z(θ δ) = 1 + ρ − 2δ
α

α + β
+ δ2

α(α + 1)
(α + β)(α + β + 1)

(2)

denotes the normalization constant and B(α,β) = ∫ 1
0 tα−1(1 − t)β−1 dt is the beta func-

tion. When δ = 2, α = β = 1 and ρ = 0, we have the U-quadratic distribution on
(0, 1). When δ = 0, we obtain the classical beta distribution with parameter vector θ0 =
(α,β , ρ, 0) := (α,β). The parameters α, β (which appear as exponents of the r.v.) and ρ

control the shape of the distribution. The uni- or bimodality is controlled by the parame-
ter δ. Note that for α, β and δ �= 0 fixed, the parameter ρ also controls the unimodality or
bimodality of the distribution; see Subsection 2.1. From Figure 1, we note some different
shapes of the Bbeta PDF for different combinations of parameters. Figure 1(a,b) represents
L shape and its bimodal form and bell shaped case of beta distribution, respectively.
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Figure 1. The PDF of the bimodal beta distribution for different values of parameters. In the figure on
the left, the PDF presents strict decreasingmonotonicity or decreasing-increasing-decreasing shapes. In
the figure on the right, the PDF shows symmetry and uni- or bimodality.

Unlike Figure 1(b), Figure 2(a,b) shows that, a peak can be major peak and the other
one can be minor peak.

The asymptotic behaviour of the PDF (1) is as follows:

f (0+; θ δ) = lim
x→0,
x>0

f (x; θ δ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β(ρ + 1)

1 + ρ − 2δ
1+β

+ 2δ2
(1+β)(2+β)

, α = 1,

0, α > 1,

+∞, α < 1,

(3)

and

f (1−; θ δ) = lim
x→1,
x<1

f (x; θ δ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α[ρ + (1 − δ)2]

1 + ρ − 2δα
α+1 + δ2α(α+1)

(α+1)(α+2)

, β = 1,

0, β > 1,

+∞, β < 1.

(4)

This asymptotic behaviour of the Bbeta PDF was expected, since the bimodal beta distri-
bution is defined in terms of the classical beta. It is clear that when δ = 0; f (0+; θ δ) = β

for α = 1 and f (1−; θ δ) = α for β = 1.
If X ∼ Bbeta(θ δ), the cumulative distribution function (CDF) (see Figure 3), the

survival function (SF) and the hazard rate function (HR) of X are, respectively, given
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Figure 2. The PDF of the bimodal beta distribution for different values of parameters. Both figures
present asymmetry and bimodality.

by

F(x; θ δ) = 1
Z(θ δ)

[
(1 + ρ) Ix(α,β) − 2δ

Bx(α + 1,β)

B(α,β)
+ δ2

Bx(α + 2,β)

B(α,β)

]
, (5)

S(x; θ δ) = 1
Z(θ δ)

2∑
i=0

ci
[
B(α + i,β)

B(α,β)
− Bx(α + i,β)

B(α,β)

]
and (6)

H(x; θ δ) =
[
ρ + (1 − δx)2

]
xα−1 (1 − x)β−1∑2

i=0 ci [B(α + i,β) − Bx(α + i,β)]
, (7)

where Ix(α,β) = Bx(α,β)/B(α,β) is the incomplete beta function ratio, Bx(α,β) =∫ x
0 tα−1(1 − t)β−1dt is the incomplete beta function, and c0 = 1 + ρ, c1 = −2δ, c2 = δ2.
For more details on the derivation of these formulas, see Section 3.

2.1. Bimodality properties

To state the following result that guarantees the uni- or bimodality of the Bbeta distribution,
we define the following cubic polynomial:

p3(x) = a3x3 + a2x2 + a1x + a0 = 0, (8)

where a3 = −δ2(α + β), a2 = δ[α(δ + 2) + 2β + δ − 2], a1 = −[α(2δ + ρ + 1) + (β −
2)(ρ + 1)] and a0 = (α − 1)(ρ + 1).

Theorem 2.1 (Uni- or bimodality): Let X ∼ Bbeta(θ δ) such that α > 1,β > 1, (δ −
1)2 + ρ > 0 and δ > 0.

(i) If p3(x) has a single positive zero then the Bbeta distribution is unimodal.
(ii) If p3(x) has exactly three zeros in (0, 1) then the Bbeta distribution is bimodal.
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Figure 3. TheCDFof the bimodal beta distribution for different values of parameters. Due to bimodality,
as seen in the figure, it is natural to expect the CDF graph to present up to three inflection points.

Proof: A simple computation shows that

f ′(x; θ δ) = xα−2(1 − x)β−2

Z(θ δ)B(α,β)
p3(x), (9)

where p3(x) is given in (8). Under the conditions stated in the theorem, we have a3 < 0,
a2 > 0, a1 < 0 and a0 > 0. By definition, the boundary points are never critical points,
then we exclude the analysis at these points.

Since p3(0) = a0 > 0 and p3(1) = a3 + a2 + a1 + a0 = (1 − β)[(δ − 1)2 + ρ] < 0
because β > 1 and (δ − 1)2 + ρ > 0, the Intermediate Value Theorem guarantees that
there is at least one root in the interval (0, 1). Further, by Descartes rule of signs (see, e.g.
Refs. [31] and [10]), p3(x) has one or three roots in the interval (0, 1).

Assume that p3(x) has a single zero. In this case, f (x; θ δ) has a single critical point,
denoted by x0. Since, for α > 1 and β > 1, f (0+; θ δ) = 0 and f (1−; θ δ) = 0, see limits
in (3) and (4); it follows that f (x; θ δ) increases on (0, x0) and decreases on (x0, 1). That is,
x0 is a global maximum point of f (x; θ δ). This proves Item (i).

On the other hand, if p3(x) has exactly three zeros in (0, 1) then f (x; θ δ) has three
critical points x1, x2 and x3. Without loss of generality, let us assume that x1 < x2 < x3.
Again, since, for α > 1 and β > 1, f (0+; θ δ) = 0 and f (1−; θ δ) = 0, it follows that f (x; θ δ)

increases on the intervals (0, x1) and (x2, x3), and decreases on (x1, x2) and (x3, 1). In other
words, x1 and x3 are two maximum points and x2 is the unique minimum point. Then the
statement in Item (ii) follows.

Thus we have completed the proof of the theorem. �

Remark 2.1: By considering α, β , δ and ρ as in the Table 1, it is clear that the conditions of
Theorem 2.1 are satisfied. Then, depending on the number of roots of p3(x), Theorem 2.1
guarantees the uni- or bimodality (U- or B) of PDF f (x; θ δ). These results are compatible
with Figure 1(b).
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Table 1. Roots of the polynomial p3(x) and shapes of the PDF bimodal beta using the values of the
parameters of Figure 1(b).

α β δ ρ a3 a2 a1 a0 Real roots of p3(x) in (0, 1) Shape

2 2 2 0.25 −16 24 −10.5 1.25 x = 0.19, x = 0.5, x = 0.81 B
2 2 2 1.5 −16 24 −13 2.5 x = 0.5 U
2 2 2 0 −16 24 −10 1 x = 0.15, x = 0.5, x = 0.85 B
2 2 2 0.5 −16 24 −11 1.5 x = 0.25, x = 0.5, x = 0.75 B
2 2 2 2 −16 24 −14 3 x = 0.5 U

Again, using the values of Figure 2(a ,b), it can be verified that the conditions of
Theorem 2.1 are satisfied, which allows concluding the bimodality of the PDF f (x; θ δ).
This contrasts the shape of PDF shown in Figure 2.

Theorem 2.2 (Bimodality; case ρ = 0): If X ∼ Bbeta(θ δ), α > 1,β > 1, ρ = 0, δ > 1,
and

[δ(α + 1) + α + β − 2]2 > 4δ(α + β)(α − 1), (10)

then the Bbeta distribution is bimodal with maximum points

xmax,± = 1
δ

+ δ(α + 1) − (α + β + 2)
2δ(α + β)

±
√
[δ(α + 1) + α + β − 2]2 − 4δ(α + β)(α − 1)

2δ(α + β)

and minimum point x = 1/δ, where 0 < xmax,− < x = 1/δ < xmax,+ < 1.

Proof: Taking ρ = 0 in (9), we have

f ′(x; θ δ) = xα−2(1−x)β−2

Z(θ δ)B(α,β)
(1−δx)

{
(α + β)δx2−[δ(α + 1) + α + β − 2] x + (α−1)

}
.

A direct calculus shows that f ′(x; θ δ) = 0 if and only if (excluding the boundary points)
x = 1/δ and

x± = δ(α + 1)+α+ β−2 ±
√
[δ(α + 1) + α + β−2]2 − 4δ(α+β)(α−1)

2δ(α + β)
= xmax,±.

Hence, under condition (10), it follows that the equation f ′(x; θ δ) = 0 has three roots x =
1/δ, x− and x+ within the interval (0, 1), where x− < x = 1/δ < x+.

Since, for α > 1 and β > 1, f (0+; θ δ) = 0 and f (1−; θ δ) = 0, see limits in (3) and (4);
the bimodality of the Bbeta distribution is guaranteed, where x− = xmax,− and x+ =
xmax,+ are two maximum points and x = 1/δ is the unique minimum point. �

Remark 2.2: Let α = β = δ = 2 and ρ = 0. It is clear that the condition (10) is sat-
isfied. Then, by Theorem 2.2, the Bbeta distribution is bimodal with maximum points
xmax,− = (2 − √

2)/4 ≈ 0.15 and xmax,+ = (2 + √
2)/4 ≈ 0.85, and minimum point x =

1/2; which is compatible with Figure 1(b).
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Table 2. Modes, maximum values and shapes of the PDF bimodal beta using the parameter values in
Figure 1 (b) and Figure 2(a)–(b).

α β δ ρ x∗max,− x∗max,+ f (x∗max,− ; θ δ) f (x∗max,+ ; θ δ) Shape

2 2 2 0.25 0.19 0.81 1.30 1.30 B
2 2 2 0 0.15 0.85 1.87 1.87 B
2 2 2 0.5 0.25 0.75 1.21 1.21 B

Proposition2.3: TheBbetaPDF f (x; θ δ) is symmetric at the point x = 1/2wheneverα = β

and δ = 2.

Proof: A simple algebraic manipulation shows that, if α = β and δ = 2 then f (0.5 −
x; θ δ) = f (0.5 + x; θ δ), ∀ 0 < x < 1. Then the proof follows. �

Theorem 2.3: If X ∼ Bbeta(θ δ), α = β > 1, ρ < 1/(α − 1) and δ = 2, then the Bbeta
distribution is bimodal with maximum points

x∗
max,± = 1

2
±

√
ρα(1 − α) + α

2α

and minimum point x = 1/2, where 0 < x∗
max,− < x = 1/2 < x∗

max,+ < 1. Moreover, the
maximum values coincide, that is, f (x∗

max,−; θ δ) = f (x∗
max,+; θ δ).

Proof: As a by-product of proof of the Theorem 2.1, we have f ′(x; θ δ) = 0 if and only if x
is a zero of polynomial p3(x) defined in (8). Setting α = β > 1 and δ = 2 in polynomial
p3(x), we get f ′(x; θ δ) = 0 if and only if

p∗
3(x) = −8αx3 + 12αx2 − [α(5 + ρ) + (α − 2)(ρ + 1)]x + (α − 1)(ρ + 1) = 0.

Note that the above polynomial can be written as p∗
3(x) = 2(x − (1/2))[4αx2 − 4αx +

(α − 1)(ρ + 1)]. Then, it is clear that x = 1/2 and x∗
max,± are critical points of f (x; θ δ),

where 0 < x∗
max,− < x = 1/2 < x∗

max,+ < 1. Note that the restriction ρ < 1/(α − 1) guar-
antees that the discriminant of the quadratic polynomial implicit in p∗

3(x) is positive.
By using that α > 1 and β > 1, and by following the same steps as in the final paragraph

of proof of the Theorem 2.2, we guarantee bimodality of the Bbeta distribution.
Finally, the identity f (x∗

max,−; θ δ) = f (x∗
max,+; θ δ) follows from Proposition 2.3. �

Remark 2.4: By considering α, β , δ and ρ as in the Table 2, it is clear that the restric-
tion ρ < 1/(α − 1) is satisfied. Then, Theorem 2.3 guarantees the bimodality (B) of PDF
f (x; θ δ) with minimum point x = 1/2 and points (and values) of maximum specified in
this table. These results are compatible with Figures 1(b) and 2(a)–(b).

3. Moments

In this section, some closed expressions for truncated moments and real moments of the
Bbeta distribution are obtained. Other properties as rawmoments, mean residual life func-
tion andmoment generating functionwere also analysed in Section I of the Supplementary
Material.
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Theorem 3.1: If X ∼ BBeta(θ δ) then, for 0 � a < b � 1 and r > −α,

E
(
Xr1{a�X�b}

) = 1
Z(θ δ)

2∑
i=0

ci
[
Bb(α + r + i,β)

B(α,β)
− Ba(α + r + i,β)

B(α,β)

]
,

where c0 = 1 + ρ, c1 = −2δ, c2 = δ2, and Bx(α,β) is the incomplete beta function.

Proof: By using definition of expectation and definition of Bbeta density, we have

E
(
Xr1{a�X�b}

) = 1
Z(θ δ)

2∑
i=0

ci E
(
Yr+i1{a�Y�b}

)
, Y ∼ Bbeta(θ0).

Since E(Yr+i1{a�Y�b}) = [Bb(α + r + i,β) − Ba(α + r + i,β)]/B(α,β), the proof of the
theorem follows. �

Taking r = 0, b = x and a = 0 in Theorem 3.1, we get the formula (5) for the CDF.
Letting r = 0, b = 1 and a = x in Theorem 3.1, we get the formula (6) for the SF. By
combining the formula (6) of CDF and definition of the Bbeta distribution, we obtain the
formula (7) for the HR.

Taking r = 1, a = x and b = 1 in Theorem 3.1, we get a closed formula for the mean
residual life function, see Corollary 1.1 of the Supplementary Material.

Corollary 3.1 (Real moments): If X ∼ Bbeta(θ δ) and r > −α, then

E(Xr) = 1
Z(θ δ)

[
(1 + ρ)

B(α + r,β)

B(α,β)
− 2δ

B(α + r + 1,β)

B(α,β)
+ δ2

B(α + r + 2,β)

B(α,β)

]
.

Proof: By taking b = 1 and a = 0 in Theorem 3.1 we have the following:

E(Xr) = 1
Z(θ δ)

2∑
i=0

ci
B(α + r + i,β)

B(α,β)
,

where c0 = 1 + ρ, c1 = −2δ and c2 = δ2. �

As a consequence of the above corollary, the closed expressions for the standardized
moments, variance, skewness and kurtosis of the bimodal beta r.v. X are easily obtained.

4. Further properties

In this section, we consider some properties of the Bbeta distribution, such as stochastic
representation and identifiability. For reasons of space, entropy measures such as Tsallis
[27], quadratic [23] and Shannon [24] ones were studied in Section II of the Supplementary
Material.
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4.1. Stochastic representation

Let W be a discrete r.v. with the following probability function P(W = wk) = πk, k = 0,
1, 2, where

π0 = 1 + ρ

Z(θ δ)
, π1 = − 2αδ

Z(θ δ) (α + β)
, π2 = α(α + 1)δ2

Z(θ δ) (α + β)(α + β + 1)
, for δ < 0,

and Z(θ δ) is as in (2). Notice that π0 + π1 + π2 = 1.
Let’s consider the following three r.v.’s: Y0;α,β ∼ Beta(α,β), Y1;α+1,β ∼ Beta(α + 1,β)

and Y2;α+2,β ∼ Beta(α + 2,β). Then we define a new r.v. X as follows:

X = Y0;α,β1{W=w0} + Y1;α+1,β1{W=w1} + Y2;α+2,β1{W=w2}, (11)

whereW is independent of Y0;α,β , Y1;α+1,β and Y2;α+2,β .

Proposition 4.1 (Stochastic representation for δ < 0): If X admits the form (11), then
X ∼ Bbeta(θ δ). Conversely, if X ∼ Bbeta(θ δ) then X is as in (11).

Proof: Using the law of total probability and the definition of X, we get

P(X � x) = P(Y0;α,β � x|W = w0)π0 + P(Y1;α+1,β � x|W = w1)π1

+ P(Y2;α+2,β � x|W = w2)π2

= P(Y0;α,β � x)π0 + P(Y1;α+1,β � x)π1 + P(Y2;α+2,β � x)π2,

where in the last line we used the independence of W with respect to variables Y1;α,β ,
Y2;α+1,β andY3;α+2,β . SinceP(Yk;α+k,β � x) = Ix(α + k,β), k = 0, 1, 2, the above equality
becomes

1
Z(θ δ)

[
(1 + ρ) Ix(α,β) − 2δ

Bx(α + 1,β)

B(α,β)
+ δ2

Bx(α + 2,β)

B(α,β)

]
.

But, by (5), the right-hand side is equal to the CDF F(x; θ δ).
Then we have completed the proof. �

4.2. Identifiability

A simple observation shows that the bimodal beta PDF f (x; θ δ) in (1), with parame-
ter vector θ δ = (α,β , ρ, δ), can be written as a finite (generalized) mixture of three beta
distributions with different shape parameters, i.e.

f (x; θ δ) = π0f (x;α,β) + π1f (x;α + 1,β) + π2f (x;α + 2,β), 0 < x < 1, (12)

where π0, π1 and π2 are constants (that depends only on θ δ) given in Proposition 4.1, and
f (x;α,β) = xα−1(1 − x)β−1/B(α,β), 0< x<1, (α > 0,β > 0), denotes the standard beta
PDF.

Unlike Proposition 4.1, here δ can be non-negative. In principle, mixing non-negative
weights are not necessary since mixtures can be PDF even if some of weights are negative.
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Let B be the family of beta distributions, as follows:

B =
{
F : F(x;α,β) =

∫ x

0
f (y;α,β) dy, α > 0,β > 0, 0 < x < 1

}
.

WriteHB as the class of all finitemixtures ofB. It is well-known thatHB is not identifiable;
see the main Theorem of Ahmad and Al-Hussaini [1]. Let HB∗ be the class of all finite
mixtures of B with the restriction that the shape parameters β are pairwise different (that
is, βi �= βj for i �= j). As a consequence of the main result of Atienza et al. [3], it is a simple
task to prove that the classHB∗ is identifiable; see, e.g. Proposition 3.2.2 of de Alencar [5]
or Proposition 1.2 in the Appendix of Alfaia [2].

The following result proves the identifiability of bimodal beta distribution.

Proposition 4.2: The mapping θ δ = (α,β , ρ, δ) �−→ f (·; θ δ), where the β ’s are pairwise
different, is one-to-one.

Proof: Let us suppose that f (x; θ δi) = f (x; θ δj) for all 0< x<1, where θ δi = (αi,βi, ρi, δi)
and θ δj = (αj,βj, ρj, δj). In other words, by (12),

π0;if (x;αi,βi) + π1;if (x;αi + 1,βi) + π2;if (x;αi + 2,βi)

= π0;jf (x;αj,βj) + π1;jf (x;αj + 1,βj) + π2;jf (x;αj + 2,βj),

where πk;i and πk;j, k = 0, 1, 2, are defined as in Proposition 4.1. SinceHB∗ is identifiable,
we have πk;i = πk;j, for k = 0, 1, 2, and αi = αj, βi = βj. Hence, from equalities πk;i =
πk;j, k = 0, 1, 2, immediately follows that ρi = ρj and δi = δj. Therefore, θ δi = θ δj , and the
proof follows. �

5. Regressionmodel, estimation and diagnostic analysis

LetX1, . . . ,Xn be n independent random variables, where eachXi, i = 1, . . . , n, follows the
PDF given in (1). We assume that the parameters αi and βi satisfy the following functional
relations:

g1(αi) = η1i = w
i γ and g2(βi) = η2i = z

i ζ , (13)

where γ = (γ1, . . . , γp) and ζ = (ζ1, . . . , ζq) are vectors of unknown regression coef-
ficients which are assumed to be functionally independent, γ ∈ R

p and ζ ∈ R
q, with

p+ q<n, η1i and η2i are the linear predictors, and wi = (wi1, . . . ,wip)
 and zi =

(zi1, . . . , ziq) are observations on p and q known regressors, for i = 1, . . . , n. Furthermore,
we assume that the covariate matrices W = (w1, . . . ,wn)

 and Z = (z1, . . . , zn) have
rank p and q, respectively. The link functions g1 : R → R

+ and g2 : R → R
+ in (13) must

be strictly monotone, positive and at least twice differentiable, such that αi = g−1
1 (w

i γ )

and βi = g−1
2 (z

i ζ ), with g−1
1 (·) and g−1

2 (·) being the inverse functions of g1(·) and g2(·),
respectively. There are several possible choices for the link functions g1(·) and g2(·). For
example, one can use the logarithmic specification gj(·) = log(·), square root gj(·) = √·, or
identity gj(·) = · (with special attention to the sign of the estimates), j = 1, 2. In this paper,
we consider the log link, gj(·) = log(·), since it is the most used for positive parameters.
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The log-likelihood function for θ δ = (γ , ζ , ρ, δ) based on a sample of n independent
observations is given by


(θ δ) =
n∑

i=1

(αi,βi, ρ, δ), (14)

where 
(αi,βi, ρ, δ) = − logZ(θ δ) − logB(αi,βi) + log[ρ + (1 − δxi)2] + (αi − 1) log xi
+ (βi − 1) log(1 − xi), i = 1, . . . , n, and Z(θ δ) is as in (2).

The maximum likelihood estimator (MLE) θ̂ δ = (γ̂ , ζ̂, ρ̂, δ̂) of θ δ = (γ , ζ,
ρ, δ) is obtained by the maximization of the log-likelihood function (14). However, it
is not possible to derive analytical solution for the MLE θ̂ , hence we resort to numerical
solution using some optimization algorithm, such as Newton-Raphson and quasi-Newton.

Under mild regularity conditions and when n is large, the asymptotic distribu-
tion of the MLE θ̂ δ = (γ̂ , ζ̂, ρ̂, δ̂) is approximately multivariate normal (of dimen-
sion p+ q+ 2) with mean vector θ δ = (γ , ζ, ρ, δ) and variance covariance matrix
K−1(θ δ)whereK(θ δ) = E[− ∂
(θ δ)/∂θ δ∂θ

δ ], is the expected Fisher informationmatrix.
Unfortunately, there is no closed form expression for the matrix K(θ δ). Nevertheless,
a consistent estimator of the expected Fisher information matrix is given by J(̂θ δ) =
− ∂
(θ δ)/∂θ δ∂θ

δ | θδ=θ̂δ
, which is the estimated observed Fisher information matrix.

Therefore, for large n, we can replace K(θ δ) by J(̂θ δ).
Let θδr be the r-th component of θ δ . The asymptotic 100(1 − ϕ)% confidence interval

for θδr is given by θ̂δr ± zϕ/2SE(θ̂δr), r = 1, . . . , p + q + 2, where zϕ/2 is the ϕ/2 upper
quantile of the standard normal distribution and SE(θ̂δr) is the asymptotic standard error
of θδr . Note that SE(θ̂δr) is the square root of the r-th diagonal element of thematrix J−1(̂θ δ).

Residuals are widely used to check the adequacy of the fitted model. To check the
goodness of fit of the Bbeta model, we propose to use the randomized quantile residuals
introduced by Dunn and Smyth [7]. Let F(xi; θ δ) be the cumulative distribution function
of the Bbeta distribution, as defined in (5), in which the regression structures are assumed
as in (13). The randomized quantile residual is given by

ri = �−1 (
F(xi; θ̂ δ)

)
, i = 1, . . . , n,

where �−1(·) is the standard normal distribution function. If the assumed model for the
data is well adjusted, these residuals have standard normal distribution [7].

6. Simulation study

In this section, Monte Carlo simulations are performed (i) to evaluate the finite-sample
behaviour of the maximum likelihood estimates of the regression coefficients and (ii) to
investigate the empirical distribution of the randomized quantile residuals.

The Monte Carlo experiments were carried out by considering the following regression
structure

log (αi) = γ0 + γ1 wi,

log (βi) = ζ0 + ζ1 zi, i = 1, . . . , n,
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Table 3. The estimated values for bias and mean squared error of the maximum likelihood estimators
of γ0, γ1, ζ0, ζ1, ρ and δ, and some values of sample size n.

n The estimated bias The estimated MSE

γ0 γ1 ζ0 ζ1 δ ρ γ0 γ1 ζ0 ζ1 δ ρ

50 0.212 0.106 0.132 0.299 0.177 1.306 0.234 0.634 0.417 0.839 0.488 0.235
100 0.213 0.099 0.114 0.254 0.120 0.938 0.192 0.475 0.276 0.558 0.183 0.091
200 0.202 0.093 0.095 0.215 0.081 0.543 0.157 0.390 0.181 0.381 0.068 0.006
300 0.195 0.091 0.088 0.200 0.061 0.414 0.139 0.353 0.152 0.313 0.037 0.003

Figure 4. Box plots from 5000 simulated estimates of γ0, γ1, ζ0, ζ1, ρ and δ for different sample sizes.

i.e. gj(·) = log(·), j = 1, 2, where the true values of the parameters were chosen to be the
same with the values of the estimated parameters for the case in which we use the applica-
tion part of regression, i.e. γ0 = −1.8, γ1 = 5.9, ζ0 = 3.8, ζ1 = −2.4, ρ = 0.1 and δ = 2.4.
The covariate values of wi and zi were generated from the standard uniform distribution.
The sample size considered was n = 50, 100, 200 and 300. All simulations were conducted
in R [22] using the BFGS algorithm available in the optim() function. For each scenario,
the Monte Carlo experiment was repeated 5000 times.

The Bbeta distribution is easily simulated from (5) as follows: if U has a uniform
U(0, 1) distribution, the solution of the non-linear equation X = F−1(U; θ δ) has the X ∼
Bbeta(θ δ) distribution, where F−1(·; ·) is the inverse functions of F(·; ·). To simulate data
from this non-linear equation, we can use the programming language R throughf.inv()
function [22].

In the rest of this section, a small simulation study is presented to observe the finite
sample performance of the proposed estimators from a regression approach. For such
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Table 4. Descriptive measures of the random-
ized quantile residuals for the bimodal beta
model for different sample sizes.

n Mean StdDev Skewness Kurtosis

50 −0.001 0.999 0.028 2.854
100 −0.002 0.999 0.054 2.976
200 −0.003 0.997 0.077 3.002
300 −0.003 0.997 0.084 3.025

evaluation, the estimated bias and the estimated mean squared error (MSE) were calcu-
lated. The results are presented in Table 3 and Figure 4.

Table 3 presents the bias and MSE for the MLEs of γ0, γ1, ζ0, ζ1, ρ and δ. Based on the
results at these tables, we find that the estimates are convergent to their corresponding
values of parameters. As expected, increasing the sample size n reduces substantially both
bias and MSE. The previous findings are confirmed by the box plots shown in Figure 4.

6.1. Residuals

The second simulation study was performed to examine how well the distributions of the
randomized quantile residuals are approximated by the standard normal distribution. The
evaluation of the randomized quantile residuals were based on the normal probability plots
of the mean order statistics and descriptive statistics. The results are presented in Table 4
and Figure 4 of the Supplementary Material.

In Table 4, we present the mean, standard deviation (StdDev), skewness and kurtosis
of the randomized quantile residuals. For all scenarios, that is, the residuals have approxi-
mately zeromean and unit standard deviation, have skewness close to zero, and the kurtosis
is near three.

7. Real data application

In this section, to evaluate the applicability of the proposed model, a real data set with
bimodality is considered. In particular, a real-life application related to the proportion
of votes that Jair Bolsonaro received in the second turn of Brazilian elections in 2018 is
analysed. We compared the potentiality of the Bbeta regression with the traditional beta
regressionmodel. In order to estimate the parameters of model, we adopt theMLEmethod
(as discussed in Section 5). The asymptotic standard errors were computed using the
observed Fisher information matrix. The required numerical evaluations for data analysis
were implemented using the R software [22].

The goal of this data analysis is to describe the proportion of votes that Jair Bolsonaro
received in the second turn of Brazilian elections in 2018 for all 5.565 cities, and it is
available at https://dadosabertos.tse.jus.br. The response variable Xi is the
proportion of votes given themunicipal human development (mhdi). TheMHDI is used as
explanatory variable since it is an importantmeasure to guide authorities to assess progress
and social reality as well as to define public policy priorities and comparisons of different
cities [19]. Figure 5 plots the histogramwith density estimated the response variable used in
the application and the scatter plot of municipal human development against proportion
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Figure 5. Estimated PDF and scatter plot ofmunicipal humandevelopment against proportion of votes.

of votes. From Figure 5, we can see that the response variable has bimodality. Further-
more, there is evidence of a proportion of votes trend with increased municipal human
development. The correlation coefficient between the proportion of votes and MHDI is
0.8290.

To explain this proportion of votes we consider the bimodal beta regression model,
defined as

Yi ∼ Bbeta(θ δ),

log(αi) = γ0 + γ1 mhdii,

log(βi) = ζ0 + ζ1 mhdii,

where i = 1, 2, . . . , 5.565 cities and mhdii is municipal human development of cities i. For
comparison purposes the beta regression model was fitted, assuming that

Yi ∼ beta(μi,φi),

logit(μi) = β0 + β1 mhdii,

log(φi) = γ0 + γ1 mhdii.

and the unit-bimodal Birnbaum-Saunders (UBBS) regression model was fitted, assuming
that

Yi ∼ UBBS(αi,βi, δ),

log(αi) = ν0 + ν1 mhdii,

log(βi) = η0 + η1 mhdii.

Table 5 shows the estimated parameters and standard errors. Table 6 shows Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC) for the fitted models. In
general, it is expected that the better model fitting the data presents the smallest values
for the quantities which are AIC and BIC. Based on the AIC and BIC criteria, the model
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Figure 6. Half-normal plot of randomized quantile residuals with simulated envelope for the fit of beta
and bimodal beta.

Table 5. Maximum likelihood estimates and standard errors (SE)
for the fit of the bimodal beta, beta and unit-bimodal Birnbaum-
Saunders models in the proportion of votes.

Model Parameter Estimate SE

Bbeta γ0 −1.8999 0.1963
γ1 5.9471 0.3044
ζ0 3.8341 0.1915
ζ1 −2.4232 0.2862
ρ 0.1096 0.0090
δ 2.4092 0.0351

beta β0 −7.5343 0.0749
β1 11.1820 0.1105
γ0 1.0029 0.1675
γ1 2.5214 0.2528

UBBS ν0 −0.5721 0.1001
ν1 −0.1035 0.1436
η0 5.0120 0.0257
η1 −8.0601 0.0381
δ 0.6405 0.0990

which provides a better fit in this data set is the Bbeta regression model. This claim is also
supported by the residual plots with simulated envelopes shown in Figure 6.

8. Concluding remarks

When modeling responses with bimodal bounded to the unit interval, despite its broad
sense applicability in many fields, the beta distribution is not suitable. In this paper,
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Table 6. Information cri-
teria for the fitted models.

Models AIC BIC

Bbeta −8786 −8746
beta −8238 −8212
UBBS −8115 −8082

the well-known two-parameter beta distribution is extended by introducing two extra
parameters, thus defining the bimodal beta (Bbeta) distribution, based on a quadratic
transformation technique used to generate bimodal functions [8,28], which generalizes the
beta distribution. We provide a mathematical treatment of the new distribution, including
bimodality, moments, entropies, stochastic representation and identifiability. We allow a
regression structure for the parameters α and β . The estimation of the model parameters
is approached by maximum likelihood and its good performance has been evaluated by
means of Monte Carlo simulations. Furthermore, we have proposed residuals for the pro-
posed model and conducted a simulation study to establish their empirical properties in
order to evaluate their performances. The proposed model was fitted to the proportion
of votes that Jair Bolsonaro received in the second turn of Brazilian elections in 2018. As
expected, the Bbeta model outperforms the beta regression in the presence of bimodality.
Further, Bbeta is capable to fit well when compared with UBBS.
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