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Abstract
The beta regressionmodel is the commonly used approach formodeling data in the unit
interval. However, there are in the literature some useful and interesting alternatives
which often under-used. This paper proposes a novel regression model for bounded
data, where the response variable is complementary beta distributed with mean and
dispersion parameters. The proposed regression model is a natural strong competitor
of the beta regression model. The maximum likelihood method is used for estimating
the model parameters. A Monte Carlo experiment is conducted to evaluate the per-
formances of these estimators in finite samples. The usefulness of the new regression
model is illustrated by two real applications.

Keywords Bounded data · Beta distribution · Complementary beta distribution ·
Regression model

1 Introduction

Several natural or anthropogenic phenomena are measured as indicators, percentages,
proportions, ratios and rates which are bounded on a certain interval, usually in the
unit interval (0, 1). The need for modeling and analyzing bounded data occurs in
many fields of real life such as politics [21], psychology [32], medicine [24] and so
on. In such situations, to probabilistic modeling these phenomena, under a parametric
paradigm, probability distributions limited to (0, 1) are indispensable. Certainly, the
two parameter beta distribution is the most widely model used in the literature to
describe data in the unit interval, especially because its flexibility [16].

B Marcelo Bourguignon
m.p.bourguignon@gmail.com

1 Departamento de Estatística, Universidade Estadual de Campinas, Campinas, SP, Brasil

2 Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil

3 Departamento de Estatística, Universidade Estadual de Maringá, Maringa, PR, Brasil

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42519-022-00256-w&domain=pdf
http://orcid.org/0000-0002-3320-9834
http://orcid.org/0000-0002-1182-5193
http://orcid.org/0000-0001-6740-0445


   25 Page 2 of 18 Journal of Statistical Theory and Practice            (2022) 16:25 

In order to accommodate explanatory variable in the modeling, Cepeda-Cuervo
[4] and Ferrari and Cribari-Neto [8] introduced the beta regression model, which has
been successfully applied in several context, mainly because of its flexibility and direct
parameter interpretation in terms of the mean and precision parameters. Recently, new
families of distributions have been introduced for modeling bounded phenomena in
the presence of covariates. For instance, the Kumaraswamy regression model [27],
the Johnson SB regression model [22], the unit-Lindley regression model [23] and the
unit-Weibull regression model [24]. Nevertheless, in comparison with the rich variety
of distributions for modeling positive random variables, there are few alternatives
distribution for bounded variables. In addition, though the proposed distributions in
the literature to describe bounded data there is still no agreement on preference and
advantage of a specific model.

In particular, a probability distribution related to beta that has not received much
attention in the literature was introduced by Jones [17] and results from reversing the
roles of the distribution and quantile functions of the beta distribution. He called this
distribution as complementary beta (CB) distribution and showed that it has several
attractive properties that are complementary to those of the beta distribution. Despite
of this, the CB distribution has been neglected in the literature. To the best of our
knowledge, the only real data analysis using CB distribution appeared in Iacobellis
[15]. More recently, Mazucheli et al. [23] compared the L-moment and maximum
likelihood estimators by means of simulation studied and analysis of relative indices
from annual temperature extremes. However, no attention has been paid for the CB
distribution in the regression analysis, until now.

In this context, the goal of this paper is to propose a new regression model based
on the CB distribution using a new parameterization that is indexed by mean and
dispersion parameters and investigated as a useful alternative to the beta regression
model, with the hope that the new model may have a “better fit” in certain practical
situations. In fact, Iacobellis [15] wrote: “As a practical advantage, the CB model
allows to evaluate,within a unique and coherent probabilistic framework, flowduration
curves, annual minimum flow distribution, total annual flow distribution and other
useful functions for design and management of structural and nonstructural water
resources systems, from environmental minimum streamflow requirements to stream
diversion and regulation structures”. Furthermore, the mean of the CB distribution
has a simple formula allows us to directly incorporate the covariates in the mean in
order to quantify their average influence on the response variable. It is noteworthy
that in statistical modeling is important consider different mechanism to propose a
solution rather than trusting in a single choice. Thus, one of the main motivation of
these paper is to contribute with another attractive regression model for modeling of
limited response variables.

Also, it should be highlighted that, compared with the beta model, the CB model
has the following advantages [17]:

1. the CB distribution is much more amenable than the beta distribution to exact
computations involving expectations of order statistics, including L-moments;

2. the CB distribution has the position in a wider family of distributions defined
through the same simple form for their quantile density functions [20];
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3. the CB distribution has unique sub-models as special cases, such as the cosine
distribution, among others;

4. theCBdistribution can provide better fits than beta distributions in some interesting
situations (see Sect. 4).

The remainder of this paper is organized as follows. In Sect. 2, we study the CB
distribution briefly based on Jones [17] and introduce a new parameterization of the
CB distribution that is indexed by the mean and dispersion parameters. In Sect. 3, we
formulate theCBregressionmodelwith varyingdispersion andestimate its parameters.
In Sect. 4, some numerical results of the estimators and the empirical distribution of the
residuals are presented. In Sect. 5, we illustrate the proposed model and its diagnostics
with two real-world data. In Sect. 6, we present our conclusions.

2 Complementary Beta Distribution

In this section, theCBdistribution is reviewed and anewparameterization is introduced
based on the mean and dispersion parameters.

The random variable Z follows a beta distribution with shape parameters a, b > 0
if its probability density function (p.d.f) is expressed as

fB(z; a, b) = 1

B(a, b)
za−1 (1 − z)b−1, 0 < z < 1,

where B(a, b) = ∫ 1
0 ta (1 − t)b−1dt is the beta function. The corresponding cumu-

lative distribution function (c.d.f.) is the regularized incomplete beta function, given
by

FB(z; a, b) = Bz(a, b)

B(a, b)
, 0 < z < 1,

where Bx (a, b) denotes the incomplete beta function, i.e., Bx (a, b) = ∫ x
0 ta−1 (1 −

t)b−1 dt . For a detailed discussion of beta distribution, interested readers may refer to
Johnson et al. [16], Gupta and Nadarajah [10] and Nadarajah and Kotz [28].

Regression models are typically constructed to model the mean of a distribution. In
this context, a parameterization of the beta distribution in terms of mean and precision
parameters was proposed by Jørgensen [19]. Let be μ = a/(a + b) and φ = a + b,
i.e., a = μφ and b = (1− μ)φ, then E(Z) = μ and Var(Z) = μ(1− μ)/(1+ φ).

This parameterization is useful to define the beta regression model since 0 < μ < 1
is the mean of Z and φ > 0 is a precision parameter. Under this parameterization,
Ferrari and Cribari-Neto [8] introduced the beta regression model.

By switching the roles of c.d.f. and quantile function of the beta distribution, Jones
[17] introduced the CB distribution, which the c.d.f. is given by

F(y; a, b) = F−1
B (y; a, b) = Iy(a, b), 0 < y < 1,
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where a > 0 and b > 0 are shape parameters, andIy(a, b) denotes the inverse of the
incomplete beta ratio. The p.d.f. of CB is defined by

f (y; a, b) = B(a, b)
[
Iy(a, b)

]1−a [
1 − Iy(a, b)

]1−b
.

The CB distribution does not have explicit moments of order k; however, for k = 1
and k = 2, Jones [17] provided the following expressions

E (Y ) = b

a + b
and E

(
Y 2

)
= 2 B(2 a, 2 b + 1)

a [B(a, b)]2
3F2 (a + b, 1, 2 a; a + 1,

2 (a + b) + 1; 1) ,

where 3F2 denotes the generalized hypergeometric function (Gradshteyn and Ryzhik,
[9], formula 7.512.5). From Dixon [6], the definition of 3F2(a, b, c; d, e; 1) is

3F2(a, b, c; d, e; 1) = (a/2)! (a − b)! (a − c)! (a/2 − b − c)!
a! (a/2 − b)! (a/2 − c)! (a − b − c)! ,

where 1 + a/2 − b − c has a positive real part, d = a − b + 1 and e = a − c + 1.
According to Jones [17], if Y has CB distribution with shape parameters a and b,

then 1 − Y has a CB distribution with shape parameters b and a. Furthermore, some
distributions are special cases of the CB distribution, such as the standard uniform
(a = b = 1), power function (b = 1), and cosine (a = b = 1/2) distributions.
For a = 1, we have the beta distribution with parameters 1 and 1/b. More recently,
Jones [18] studied theoretical structures underlying of families of complementary
distributions that can take values on (0, 1).

In order to introduce a regression structure for the mean and the dispersion of the
response variable, a different parameterization of the CB distribution is needed. Let
be μ = b/(a + b) and φ = a + b, i.e., a = φ(1 − μ) and b = φμ; hence, the p.d.f.
and c.d.f. of CB distribution can be written, respectively, as follows

f (y; μ, φ) = B(φ(1 − μ), φμ)
[
Iy(φ(1 − μ), φμ)

]1−φ(1−μ) [
1 − Iy(φ(1 − μ), φμ)

]1−φμ (1)

and

F(y;μ, φ) = Iy(φ(1 − μ), φμ), (2)

where 0 < μ < 1 and φ > 0. From now on, the notation Y ∼ CB(μ, φ) is used
to indicate that Y is a random variable following a CB distribution with mean μ and
dispersion parameter φ.

TheL-moments,whose theorywas unified byHosking [13], are linear combinations
of order statistics. The first L-moment is just the mean, while the second L-moment,
λ2 is a measure of spread, more precisely is one-half of Gini’s mean difference. For
the proposed parameterization of CB distribution, the second L-moment is given by

λ2 = φ μ (1 − μ)

1 + φ
. (3)
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Fig. 1 Probability density function of the CB distribution for selected values of μ and φ

For fixed μ, the larger the value of φ, the greater the spread of CB distribution,
justifying that φ can be interpreted as a dispersion parameter.

In Fig. 1, the p.d.f. of CB is displayed for several choices of parameter values, It is
observed that CB density has the same basic shape properties of the Beta distribution,
particularly, unimodal, U-shaped, J-shaped and reverse J-shaped.

The third and fourth L-moment ratios, τ3 = λ3/λ2 and τ4 = λ4/λ2, are important
measures of the skewness and kurtosis of a distribution, respectively [14]. For the new
CB parametrization, these quantities are given, respectively, by

τ3 = φ

φ + 2
(1 − 2μ) and τ4 = φ2(1 − 2μ)2 − φ2μ(1 − μ) + 1

(φ + 2)(φ + 3)
.

In Fig. 2, the behavior of variance, λ2, τ3 and τ4 is illustrated as a function of mean
for some values of φ. The variance values were computed by Monte Carlo simulation.
It is observed that the variance and λ2 reach the maximum at 0.25 for μ = 1/2 and
large values of φ. This property is also shared with beta distribution. Furthermore, it is
observed that CB is a symmetric distribution for μ = 1/2, positive skew for μ < 1/2
and negative skew for μ > 1/2, the intensity of skewness increases as φ increases.

In order to compare the CB and beta distributions used in regression analysis,
values for the parameter φ were obtained to have different variance for fixed μ =
0.5. The c.d.f.’s presented in Fig. 3 shows the flexibility of both distributions. In the
extreme case for Var(Y ) = 0.2, both distributions are very similar. Nevertheless, for
smaller variances and mean far from 0.5 the distributions are quite different. These
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Fig. 2 Behavior of variance, spread (λ2), skewness (τ3) and kurtosis (τ4) as function of mean (μ) for
selected values of φ

results demonstrate the versatility of CB distribution under the practical point of view,
meaning that the CB can fit better than beta depending on the phenomena.

3 RegressionModel

Let Y1, . . . ,Yn be n independent random variables, where each Yi , i = 1, . . . , n,
follows the p.d.f. given in (1) with mean μi and dispersion parameter φi . Suppose that
the mean and the precision parameter of Yi satisfies the following functional relations

g1(μi ) = x�
i β and g2(φi ) = w�

i α, (4)

where β = (β0, β1 . . . , βp−1)
� and α = (α0, α1, . . . , αq−1)

� are vectors of
unknown regression coefficients which are assumed to be functionally indepen-
dent, β ∈ R

p and α ∈ R
q , with p + q < n, and xi = (1, xi1, . . . , xip)�

and wi = (1, wi1, . . . , wiq)
� are observations on p and q known covariates, for

i = 1, . . . , n. Furthermore, assume that the covariate matrices X = (x1, . . . , xn)�
and W = (z1, . . . , zn)� have rank p and q, respectively. The link functions g1 :
(0, 1) → R and g2 : R+ → R in (4) must be strictly monotone, positive and twice
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Fig. 3 Beta and CB c.d.f.’s for distinct values of variance and mean (fixed for μ = 0.5)

differentiable, such that μi = g−1
1 (x�

i β) and φi = g−1
2 (w�

i α), with g−1
1 (·) and

g−1
2 (·) being the inverse functions of g1(·) and g2(·), respectively.
There are several possibilities for the link functions g1(·) and g2(·). The most

useful well-known link functions for g1(·) are logit: g(μi ) = log (μi/(1 − μi ));
probit: g(μi ) = �−1(μi ), where �−1(·) is the standard normal quantile function;
and complementary log-log: g(μi ) = log

[− log(1 − μi )
]
. Whereas, for g2(·) are

the logarithm: g2(φi ) = log(φi ), and the square root g2(φi ) = √
φi . An excellent

discussion on link functions can be found in Atkinson [2] and McCullagh and Nelder
[25]. Due to the direct interpretation of the parameters in terms of odds, in this paper
we consider the logit link for g1(·). Its interpretation when μi is the mean is given in
[8]. For g2(·), we consider the log link, since it is themost used for positive parameters.

3.1 Estimation and Inference

The log-likelihood function for θ = (β,α) based on a sample of n independent
observations is given by

�(β,α) =
n∑

i=1

�(μi , φi ), (5)

where

�(μi , φi ) = log[B(φi (1 − μi ), φiμi )] + (1 − φi (1 − μi )) log
[
Iyi (φi (1 − μi ), φiμi )

]
(6)

+ (1 − φiμi ) log
[
1 − Iyi (φi (1 − μi ), φiμi )

]
.
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The maximum likelihood estimator (MLE) θ̂ = (β̂
�
, α̂�)� of θ = (β�,α�)�

is obtained by the maximization of the log-likelihood function (5). However, it is
not possible to derive analytical solution for the MLE θ̂ ; hence, we must required
to numerical solution using some optimization algorithm such as Newton–Raphson
and quasi-Newton. Following Ferrari and Cribari-Neto [8], we suggested to use it as
an initial guess for β the ordinary least squares estimates obtained from the linear

regression of the transformed responses g(y1), . . . , g(yn) on X, i.e.,
(
X� X

)−1
X� z,

where z = (g(y1), . . . , g(yn))�. As a initial guess for α, we suggest to use the q-
dimensional vector of zeros (0q ), which implies that the algorithm starts with CB
regression model with constant dispersion.

Undermild regularity conditions [5] andwhen n is large, the asymptotic distribution

of theMLE θ̂ = (β̂
�
, α̂�)� is approximatelymultivariate normal (of dimension p+q)

with mean vector θ = (β�,α�)� and variance covariance matrix K−1(θ) where

K(θ) = E

[

− ∂� (θ)

∂θ ∂θ�

]

,

is the expected Fisher information matrix. Unfortunately, there is no closed form
expression for the matrix K(θ). Nevertheless, a consistent estimator of the expected
Fisher information matrix is given by

J(̂θ) = − ∂� (θ)

∂θ ∂θ�
∣
∣
∣
θ=θ̂

,

which is the estimated observed Fisher information matrix. Therefore, for large n, we
can replace K(θ) by J(̂θ).

Let θr be the r-th component of θ . The asymptotic 100(1−γ )%confidence interval
for θr is given by

θ̂r ± zγ /2 se
(
θ̂r

)
, r = 1, . . . , p + q,

where zγ /2 is the γ /2 upper quantile of the standard normal distribution and se
(
θ̂r

)

is the asymptotic standard error of θ̂r . Note that se
(
θ̂r

)
is the square root of the r-th

diagonal element of the matrix J−1(̂θ).
Large sample inference can be conducted to test if the precision parameter does

not vary across the observations. Consider the test of the null hypothesis H0 : α j =
0 ∀ j = 1, . . . , q−1 versus H0 : α j �= 0 for at least one j . We proposed the likelihood
ratio (LR) test [29]. The LR statistic is given by

SLR = 2
[
�(β̂, α̂) − �(β̃, α̃0)

]
,

where �(β,α) is the log-likelihood function given in (6) and ˜θ = (β̃
�
, α̃0)

� is the
restricted MLE of θ = (β�,α)�. Under the usual regularity conditions and under
H0 SLR converges in distribution to χ2

q−1. The null hypothesis is rejected at level of

123



Journal of Statistical Theory and Practice            (2022) 16:25 Page 9 of 18    25 

significance γ if SLR > χ2
1−α,q−1, where χ2

1−γ,q−1 is the 1 − γ upper quantile of
Chi-square distribution with q − 1 degrees of freedom.

3.2 Model Adequacy

In order to evaluate and study departures from the model assumption, we propose
to use the randomized quantile residuals introduced by Dunn and Smyth [7]. These
residuals for the CB regression model is defined by

ri = �−1{Iyi (μ̂i , φ̂i )}, i = 1, 2, . . . , n,

where �−1(·) is the standard normal distribution function andIyi (μ̂i , φ̂i ) is the c.d.f.
of CB distribution given by (2) with μ̂i = g−1

1 (x�
i β̂) and φ̂i = g−1

2 (w�
i α̂).

Apart from the variability due the estimates of parameters, these residuals have
standard normal distribution if the proposed model is correctly specified [7]. Thus,
to check if the model assumption is adequate, we can examine the residuals plots
with simulated envelope proposed by Atkinson [3]. The simulated envelope can be
construct as follows

(i) fit the model and generate sample set of n independent observations using the
estimated parameters of the fitted model;

(ii) fit the model from the generated sample, calculate the values of the residuals and
arrange them in order;

(iii) repeat steps (i) and (ii) B number of times;
(iv) consider the n sets of the B ordered statistics of the residuals, then for each set

calculate the quantile γ /2, the median and the quantile 1 − γ /2;
(v) plot these values and the ordered residuals of the original sample set versus the

expected order statistics of a normal distribution, which is approximated as

�−1
(
i + 0.375

n + 0.25

)

.

4 Monte Carlo Studies

In this section, we conductedMonte Carlo simulations (i) to evaluate the finite-sample
behavior of the maximum likelihood estimates of the regression coefficients and (ii)
to investigate the empirical distribution of the randomized quantile residuals.

TheMonteCarlo experimentswere carried out considering the following regression
structure

g1(μi ) = log

(
μi

1 − μi

)

= β0 + β1 xi , i = 1, . . . , n

g2(φi ) = log (φi ) = α0 + α1 wi , i = 1, . . . , n,
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Table 1 Estimated bias, mean-squared error and coverage probability

n Bias RMSE CP95%
β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1

50 −0.007 0.011 −0.047 −0.004 0.127 0.146 0.332 0.523 93.22 93.34 93.30 93.72

100 −0.004 0.006 −0.021 −0.005 0.090 0.104 0.215 0.366 94.00 94.36 93.82 94.68

150 −0.003 0.004 −0.014 −0.001 0.073 0.079 0.180 0.297 94.30 94.74 94.04 94.36

200 −0.003 0.003 −0.011 −0.000 0.063 0.066 0.157 0.258 93.96 94.22 94.22 94.64

300 −0.002 0.003 −0.008 −0.001 0.051 0.054 0.129 0.215 94.28 94.28 94.02 94.24

500 −0.001 0.002 −0.004 −0.002 0.039 0.040 0.101 0.168 94.36 94.64 94.08 94.46

where the true values of the parameters were taken as β0 = −1.0, β1 = 1.0, α0 = 0.5
and α1 = −1.0. The covariate values of xi were generated from the standard normal
distribution, while the values ofwi were draws from the standard uniform distribution.

All simulations were conducted in SAS using the quasi-Newton algorithm available
in the NLMIXED procedure [30] to obtain the maximum likelihood estimates. For
each scenario, the Monte Carlo experiment was repeated 5, 000 times. These results
are presented in the next subsection, and the SAS codes are available from the authors
upon request.

4.1 Parameter Estimation

In this subsection, a small simulation study is presented to observe the finite sample
performance of the proposed estimators. For such evaluation, the estimated bias, the
estimated root-mean squared error (RMSE) and the coverage probability of 95% con-
fidence interval (CP95%) were computed. The results are presented in Table 1 and Fig.
4.

Table 1 presents the biases, MSE and CP95% of the estimators of the parameters
β0, β1, α0 and α1. As expected, increasing the sample size reduces substantially both
bias and RMSE. Furthermore, note that the asymptotic confidence intervals have an
empirical coverage probability that is less than the nominal value 0.95. Overall, we
observe that the asymptotic confidence intervals have a good performance. The pre-
vious findings are confirmed by the box plots shown in Fig. 4.

4.2 Residuals

The second simulation study was performed to examine how well the distribution of
the randomized quantile residuals are approximated by the standard normal distribu-
tion. The evaluation of the randomized quantile residuals was based on the normal
probability plots of the mean order statistics and descriptive measures. The results are
presented in Table 2 and Fig. 5.

In Table 2,we present themean, standard deviation (StdDev), skewness and kurtosis
of randomized quantile residuals. Table 2 shows that there is a good overall agreement
between the sample and population values for the randomized quantile residuals. The
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Fig. 4 Boxplots of the estimates parameters obtained inMonte Carlo experiments for different sample sizes

Table 2 Descriptive measures of
the randomized quantile
residuals

n Mean StdDev Skewness Kurtosis

50 −0.0004 0.9984 −0.2134 2.9988

100 0.0001 0.9993 −0.1139 3.0022

150 0.0000 0.9995 −0.0735 3.0030

200 0.0001 0.9997 −0.0537 3.0016

300 0.0000 0.9997 −0.0368 3.0034

500 −0.0000 0.9998 −0.0229 3.0039

residuals have approximately zero mean and unit standard deviation, have skewness
close to zero, which indicates that these residuals are approximately symmetrical, and
kurtosis is near three.

Figure 5 displays the empirical versus theoretical quantiles plots of the randomized
quantile residuals. As expected, the simulations show that the sample distribution of
randomized quantile residuals can be approximated by a standard normal distribution.
Therefore, the randomized quantile residuals can be useful for model diagnostics.

5 Real-World Data Analysis

In this section, two empirical applications of the proposed model to real data are
presented to compare the potentiality of the CB regression with the traditional beta
regressionmodel. Parameter estimates were performed under themaximum likelihood
paradigm, as discussed in Sect. 3, by using the SAS/NLMIXED procedure [30]. The
asymptotic standard errors and confidence intervals were computed using the observed
Fisher information matrix.
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Fig. 5 Normal probability plots of the mean order statistics

The model selection is carried out using the AIC (Akaike information criterion)
[1], the BIC (Bayesian information criterion) [31] and the HQIC (Hannan–Quinn
information criteria) [11]

AIC = −2�(̂θ) + 2q, BIC = −2�(̂θ) + q log(n) and HQIC = −2�(̂θ) + 2 q log (log(n)) ,

where �(̂θ) denotes the log-likelihood function evaluated at the MLE, q is the number
of parameters, andn is the sample size. In all these criteria, the decision rule is favorable
to the model with the lowest value [12].

Although both regression model are parameterized in terms of mean, and estimates
for the mean regression coefficients should be similar in magnitude and sign, it should
be highlighted that the parameter φ is clearly distinct between the two regression
models. Particularly, for the beta distribution φ denotes the precision, while for the
CB distribution denotes the dispersion.

5.1 Illiteracy Rate Data

In this application, the information of illiteracy rate of people between 25 e 29 years in
the 141 cities of Mato Grosso, a state localized in the Midwest Brazil, is considered.
The data set refers to the census of 2010, and it is available at http://atlasbrasil.org.br/
2013/. The goal is to analyze the association between illiteracy rate and the municipal
human development index (MDHI). The MHDI is used as explanatory variable since
it is an important measure to guide authorities to assess progress and social reality as
well as to define public policy priorities and comparisons of different cities [26].

Table 3 reports the mean, standard deviation (Std) and second sample L-moment
(L2) of the illiteracy rate according toMDHI of the cities inMatoGrosso (MT), Brazil.
It is clear that the mean change as the MDHI increase. In contrast, the changes in Std
and L2 across the MDHI are more slight.
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Table 3 Descriptive statistics of
illiteracy rate according to
different class of MDHI

MHDI n Mean Std L2

[0.599; 0.653) 22 0.047 0.018 0.011

[0.655; 0.668) 23 0.043 0.014 0.008

[0.669; 0.686) 23 0.032 0.012 0.007

[0.687; 0.699) 21 0.032 0.011 0.006

[0.701; 0.716) 26 0.028 0.010 0.006

[0.718; 0.785) 23 0.020 0.008 0.005

Table 4 Summary of the fitted models—Illiteracy rate data

Parameter CB Beta
MLE S.E. 95% C.I. MLE S.E. 95% C.I.

β0 2.5012 0.6409 (1.2340, 3.7684) 1.4853 0.5853 (0.3281, 2.6426)

β1 −8.5922 0.9319 (−10.435, −6.7497) −7.1032 0.8613 (−8.8063, −5.4001)

φ 0.2620 0.0203 (0.2217, 0.3022) 217.92 26.4876 (165.54, 270.29)

Table 5 The likelihood-based
statistics of fit—Illiteracy rate
data

Criteria CB Beta

AIC −843.1081 −836.5412

BIC −834.3263 −827.7595

HQIC −839.5394 −832.9725

This empirical behavior induced a regression only for the mean parameter since
the L2 has a little change according to the levels of MDHI. The likelihood ratio test
computed for H0 : φi = φ versus H1 : φi �= φ returned a statistic SLR = 1.2781
and p value = 0.7417, corroborating the empirical analysis that for this data set the
dispersion parameter φ can be constant across the covariate.

Thus, the regression structure for CB and Beta distribution is given by

logit(μi ) = β0 + β1MDHIi , i = 1, . . . , 141.

Table 4 gives theMLE and the 95% confidence intervals for both models. Although
the sign of coefficient β1 is the same for both model in CB regression, the impact of
MDHI is bigger than the Beta regression. Table 5 lists the values of the likelihood-
based statistics for both models. It is observed that the CB regression model provides
the best fit, since it has the lowest values of AIC, BIC and HQIC measures. These
claim is also supported by the residuals plots with simulated envelopes shown in Fig.
6.

The inference results ofCB regressionmodel indicated that theMDHI has a negative
impact on the illiteracy rate of the cities in MT. This means that cities with greater
MDHI have less proportion of people that do not know to read and write. This fact is
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Fig. 6 Randomized quantile residuals with simulated envelope—Illiteracy rate data
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Fig. 7 Observed values of illiteracy rate versus MHDI with the fitted mean of CB and the 95% confidence
interval

showed in Fig. 7, where the illiteracy rate versus MHDI is plotted along with the fitted
mean and the 95% confidence interval from CB regression model.

5.2 Recovery Rate of CD34+ cells Data

This analysis corresponds to a study conducted with 239 patient between 2003 and
2008 at the Edmonton Hematopoietic Stem Cell Lab in Cross Cancer Institute –
Alberta Health Services. The data set was extracted from Zhang et al. [33], and the
goal is to model the recovery rate of CD34+ cells after peripheral blood stem cell
(PBSC) transplants. The covariates associated with this response variable are: Sex: 0
for female, 1 for male; Chemo: 0 for receiving a chemotherapy on a one-day protocol,
1 for a 3-day protocol and Age: adjusted patient’s age, i.e., the current age minus 40.
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Table 6 Descriptive statistics of
recovery rate of CD34+ cells
according to the covariate

Covariate n Mean Std L2

Age

[0; 5) 65 0.776 0.123 0.069

[6; 12) 34 0.739 0.119 0.067

[13; 16) 26 0.803 0.086 0.049

[17; 20) 43 0.822 0.108 0.058

[21; 24) 37 0.801 0.112 0.062

[25; 31) 34 0.811 0.105 0.058

Chemo

0 130 0.785 0.122 0.068

1 109 0.797 0.104 0.057

Sex

Female 71 0.780 0.119 0.065

Male 168 0.795 0.112 0.062

Table 7 Summary of the fitted models —Recovery rate of CD34+ cells data

Parameter CB Beta
MLE S.E. 95% C.I. MLE S.E. 95% C.I.

β0 1.0002 0.1135 (0.7779, 1.2226) 1.0422 0.1137 (0.8193, 1.2650)

β1 0.0166 0.0053 (0.0062, 0.0271) 0.0143 0.0054 (0.0038, 0.0248)

β2 0.2354 0.1024 (0.0347, 0.4360) 0.2143 0.1037 (0.0111, 0.4175)

φ 0.6181 0.0408 (0.5382, 0.6981) 11.322 1.0159 (9.3303, 13.313)

Firstly, we considered the regression structure for mean and dispersion parameter
with all covariate. Then, we conducted a likelihood ratio test for H0 : φi = φ versus
H1 : φi �= φ the test statistics returned for CB regression was SLR = 0.8094 and
the corresponding p-value = 0.6671. We also noted that the Sex covariate was not
important for the analysis. Hence, the final regression model selected is given by

logit(μi ) = β0 + β1Agei + β2Chemoi , i = 1, . . . , 239.

The point estimates and the 95% confidence intervals for the parameters of the
considered three regression models are given in Table 7. These results indicate that
both models provide similar regression estimates for the mean parameters, leading to
identical interpretations. It should be emphasized that the coefficients of CB regression
have the smallest standard errors. Table 8 gives the values of the likelihood-based
statistics for the models. The three information criteria indicate that the CB regression
model presented a better fit than the Beta regression.

To check the model assumption, in Fig. 8 it is shown the residuals plots with
simulated envelope.Wecan conclude that theCB regressionmodel is a great alternative
model to describe these dataset.
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Table 8 The likelihood-based
statistics of fit—Recovery rate
of CD34+ cells data

Criteria CB Beta

AIC −388.9434 −383.3042

BIC −375.0375 −369.3983

HQIC −383.3397 −377.7005
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Fig. 8 Randomized quantile residuals with simulated envelope—Recovery rate of CD34+ cells data

6 Concluding Remarks

In this paper, we studied a new regression model for modeling bounded data. The
new regression model is based on the unknown CB distribution. In particular, we
have developed a new parameterized CB distribution in terms of the mean and disper-
sion parameters. The proposed regression model can be used for any application that
involves unit interval data and is a natural strong competitor of the beta regression
model. The major limitation of the proposed regression model is that the variance of
CB distribution cannot be expressed in closed form (involves the generalized hyperge-
ometric function). Maximum likelihood inference is implemented for estimating the
model parameters, and its good performance has been evaluated by means of Monte
Carlo simulations. Two real data sets were analyzed for illustrative andmodel compar-
ison purposes. For these data sets, the proposed regression model has outperformed
the usual beta model. Results of the applications showed that the proposed model is
more adequate than usual beta regression model. We hope that this new model may
attract wider applications for modeling and analyzing bounded data. As part of future
research, we plan to extend the proposed regression model to the case of data contain
zeros or ones.
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