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Quantile regression allows us to estimate the relationship between covariates and any quantile of the re-
sponse variable rather than the mean. Recently, several statistical distributions have been considered for
quantile modeling. The objective of this study is to provide a new computational package, two biomedical
applications, one of them with COVID-19 data, and an up-to-date overview of parametric quantile regres-
sion. A fully parametric quantile regression is formulated by first parameterizing the baseline distribution
in terms of a quantile. Then, we introduce a regression-based functional form through a link function.
The density, distribution, and quantile functions, as well as the main properties of each distribution, are
presented. We consider 18 distributions related to normal and non-normal settings for quantile modeling
of continuous responses on the unit interval, four distributions for continuous response, and one distri-
bution for discrete response. We implement an R package that includes estimation and model checking,
density, distribution, and quantile functions, as well as random number generators, for distributions us-
ing quantile regression in both location and shape parameters. In summary, a number of studies have re-
cently appeared applying parametric quantile regression as an alternative to the distribution-free quantile
regression proposed in the literature. We have reviewed a wide body of parametric quantile regression
models, developed an R package which allows us, in a simple way, to fit a variety of distributions, and
applied these models to two examples with biomedical real-world data from Brazil and COVID-19 data
from US for illustrative purposes. Parametric and non-parametric quantile regressions are compared with
these two data sets.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

making it difficult to assess the effects of covariates on the mean
response.

The aim of traditional regression is to assess the effect of one or
more explanatory variables (hereafter covariates) on the mean of
the response variable (hereafter response) [109]. The idea of mod-
eling the conditional mean using covariates is the core of the re-
gression techniques. Under the assumption of normality and ho-
moscedasticity of an error term, a traditional regression model is
able to provide a parsimonious description of how the mean of
the response depends on the values of the covariates [54]. In a
parametric context, the use of traditional regression models is un-
feasible when the underlying probability or statistical distribution
(hereafter distribution) does not have a simple form for its mean,
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An attractive alternative beyond mean modeling is the quan-
tile regression proposed in [58], where the mean is replaced by a
defined set of quantiles that provide a better and complete view
of the underlying relationships between the response and covari-
ates. There is a lot of literature about quantile regression, which
has been applied in areas as biology, economy, engineering, and
medicine. A review of quantile regression has been provided in
[46] for different types of data and application areas. Note that
there are three approaches to quantile regression: (i) distribution-
free [57], (ii) based on a pseudo-likelihood through the Laplace dis-
tribution [58]; and (iii) the parametric modeling using maximum
likelihood (ML) methods. The approach mentioned in (i) above
may be overly complicated or unnecessary for the relatively simple
forms of quantile dependence that are often observed in real-world
data. Besides the disadvantage of not exploring the parametric sta-
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tistical modeling elements that can be considered, this approach
can bring problems such as crossing quantile curves [36,98].

In the parametric approach indicated in (iii), the central idea is
to insert a quantile parameter in a baseline distribution so obtain-
ing a distribution parameterized in terms of a fixed quantile. By
parameterizing a distribution in terms of its quantile function, one
may interpret its location parameter as being a quantile of the dis-
tribution from which one formulates a regression for a fixed value
of this. This strategy was adopted, among others, by [92,93] with
the Kumaraswamy distribution [67] which claims that:

Employing the median-dispersion re-parameterizations of the Ku-
maraswamy distribution instead of the beta distribution in regression
models may be preferable in at least three cases. First, the median of
the dependent variable may be more interesting or relevant than its
mean on theoretical grounds. Second, if the conditional distribution of
the dependent variable is skewed, the median may be a more appro-
priate measure of central tendency than the mean. Third, by using the
median as location parameter, Kumaraswamy regressions are likely to
be much more robust to outliers than beta regressions.

It should be worth mentioning that, instead of “median-
dispersion re-parameterizations”, we can consider “quantile re-
parameterizations” for any distribution with a closed-form expres-
sion for the quantile function. In recent years, in addition to the
Kumaraswamy distribution, several distributions have been used
in their “quantile re-parameterization” forms. The veracity of this
statement can be confirmed by many recently published works on
this subject presented through the present paper.

Therefore, following the proposal considered in [58], the main
objectives of our study are to provide a new computational pack-
age implemented in the R software, two biomedical applications,
one of them with COVID-19 data, and an up-to-date review of the
parametric quantile regression models obtained re-parameterizing
a distribution in terms of a quantile. We expect this study to be a
reference source, and to encourage the use of parametric quantile
regression. Although we employ distributions with support on the
unit interval, the quantile family of two-parameter distributions
described in [118] and recently elaborated by [117] will not be con-
sidered in this survey. Also, the semiparametric quantile regression
models using the quantile-based asymmetric densities family, in-
troduced in [36], will also not be considered, but some comparison
with semiparametric quantile structures are provided.

This paper is organized as follows. Section 2 identifies the dis-
tributions used in the analysis of Gaussian-related bounded re-
sponses on the unit interval, whereas Section 3 provides similarly
the case of non-Gaussian-related bounded responses on this inter-
val. In Section 4, we introduce distributions for continuous positive
responses and the case of a discrete response. In Section 5, the
regression formulation is presented as well as the ML estimation
method while introducing an R package named unitquatreg,
closing this section with two applications based on real-world
biomedical data sets from Brazil and United States (US), includ-
ing COVID-19 data, as illustration. Some concluding remarks are
stated in Section 6. Parametric and non-parametric quantile regres-
sion models are compared with these two data sets and reported
in an appendix.

2. Parametric quantile regressions for Gaussian-related
bounded responses

In this section, in alphabetic order, we present the distributions
utilized as baseline in quantile regression modeling of responses
on the intervals (0,1) and [0,1] generated from Gaussian or nor-
mal distributions. The regression model is developed by first re-
parameterizing, in terms of the 100tth quantile, with 0 < 7 < 1,
one parameter of a baseline distribution and then introducing a
regression-based functional form through an appropriate link func-
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tion. We investigate the relevant properties of the following dis-
tributions: exponentiated arcsech-normal hyperbolic [62], Johnson
SB [18,120], unit-Birnbaum-Saunders [77,81,82], unit-half-normal
[5,60], and Vasicek [75,80]. The main probabilistic features, such
as probability density function (PDF), cumulative distribution func-
tion (CDF) and quantile function (QF) are introduced. Furthermore,
for illustrative purposes and detecting its distributional shapes, we
show the plots of the quantile re-parameterized PDFs.

2.1. The exponentiated arcsech-normal hyperbolic distribution

The exponentiated arcsech-normal hyperbolic model [62] is ob-
tained from the transformation F(y;«,8) = G(y; o, 0)?, where G
denotes here the arcsech-normal hyperbolic CDF. The correspond-
ing PDF, CDF and QF of Y are written, respectively, as

f; o, 6) = ayzle_yqu[;arcsech(y)]

X {2 -2 @[%arcsech(y)]}e ) 1, (2.1)
Fly; a, 0) = {2 —ZCD[éarcsech(y)]}e,
Q(t;e, 0) = sech|:ad>1 (1 - 112,9)} (2.2)

where 0 < ¥y < 1 and o, @ > 0, with &' denoting the QF
of the standard normal distribution corresponding to the inverse
function of &, that is, the standard normal CDF obtained from the
standard normal PDF, ¢ namely. In addition, arcsech(y) = log[1 +
(1 — y»2)/y] and sech(y) = 2/[exp(y) + exp(-y)]. When y
tends to zero, since arcsech(y) ~ log(y) — oo and then the expo-
nential term appears in f(y; «, 0), we have f(y; «, 6) — 0. When
y tends to one, since arcsech(1)=0, we have f(y; a, 6) — cc.
From the expression defined in (2.2), the parameter « can be re-
parameterized as @ = h='(n) = arcsech()/®-1[(2 — 11/9)/2],
such that p is, for a fixed and known value 7, the 100 tth quantile
of the distribution of Y. Fig. 1 shows some possible shapes of the
re-parameterized exponentiated arcsech-normal hyperbolic PDF for
selected values of |, 6 and t. Possible shapes of this distribution
are slanted as well as U and N shaped and increasing shapes. In
[62], the exponentiated arcsech-normal hyperbolic model was ap-
plied to data that verified the relationship between reading ac-
curacy with dyslexia and intelligence quotient. The model was
compared with a quantile unit-Weibull regression, indicating that
the exponentiated arcsech-normal hyperbolic regression has better
modeling capabilities for this application.

2.2. The Johnson SB distribution

The Johnson SB model [18] is obtained from the transformation
Y = {1 +exp[—(X —a)/0]}"!, where X ~ N(0, 1), which denotes a
standard normal distributed random variable. The corresponding
PDF, CDF and QF of Y are stated, respectively, as

FO @ ) =
xexp{—[a + 0 log(] {y)]z} (2.3)
Fy:a.0) = ®la+6 log(]yj) ,
oo dD—l(rg) - Dt:| "
Q(t;,0) = > '
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Fig. 1. Plots of the re-parameterized PDF stated from (2.1) for indicated values of , 6 and t.

where 0 < y < 1, xeR and & > 0. For quantile regression,
note that o presented in the expression defined in (2.4) must be
reparametrized as o = h™1(w) = ® (1) — 0 log[p/(1 — W],
where W is, for a fixed and known value t, the 100 tth quantile
of the distribution of Y. Fig. 2 shows some possible shapes of the
re-parameterized Johnson SB PDF for selected values of w, 6 and
T.

A quantile regression model considering the Johnson SB dis-
tribution has not been considered in the literature. However,
tree quantile regression models have been proposed stating
some transformations from a Johnson SB distributed random
variable. The first model was presented with basis on the sym-
metric family of distributions [72,114]. This family is also called
generalized Johnson SB distribution and is obtained by replacing

fo; a, 0, 8) =

X~N(,1) by X~S(0, 1; f;) where X ~S(0, 1; f;) means
that the random variable X follows the standardized form of
the symmetric family of distributions for some PDF generat-
ing function f;. The corresponding PDF, CDF and QF of Y =

30 oo + 0 tog(r )0 + 0 tos(25)])"

{1 + exp[-(X — oz)/@]}’l, where X ~N(0, 1), are formulated,
respectively, as

0 felle + 0 ty)I’}

) . a + 0 t(y) 2
Fiy; a, 0) = [ f(gx(“i)a)"”;1 (2.6)
QT 0) = [1+ exp(-&p2)]",

where0 <y < 1, > 0,0 eR, t(y) =log[ly/(1 —y)], and x; is
the 100 tth quantile of X ~ S(0, 1; f).

The second model was introduced in [18] considering the
power Johnson SB distribution, that is obtained from the Johnson
SB distribution and the composition of a baseline standard power
normal distribution [41] and the QF of the logistic distribution. The
corresponding PDF, CDF and QF of Y are defined, respectively, as

ya -y - @7
F@y; a, 0, 8) = {cb[a + 6 log(1 J_’ y)]}a,
Qt; . 0, 8) =H(Xf(5)9_“), (2.8)



J. Mazucheli, B. Alves, A.EB. Menezes et al.

Computer Methods and Programs in Biomedicine 221 (2022) 106816

8 8 8
2 t=010 — 1=0.75 = < |
1=0.25 1=0.90
. ©=0.50 . .
oo~ oo~ O~
N o N o N o
o o o
n n n
] \ T o ] /
o 2 o 2 o 2
n o o o o o
o - o~
" \ " / " /
D W \ @ W0 D W
A N N
=" Q 2° ( N s /
= = =
g | —== — R 2 % — S | ~
i T T T T T i T T T T T i T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
y y y
(=3 (=3 (=4
- - -
T o G G \
o~ o~ o~
1 ] v o
o o o
n n n
T o T o T o \
s 2 s s B /
o - o~
n n n
D @ w0 D
P - Py P
>c \ > >
= = =
o kd&% o o
o | — o oS
=4 T T T T T d T T T T T i T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
y y y
o o o
- - -
wo~ v~ wo~
~ o ~ =] /
o o o
n n n
T o T o T o
o 2 o 2 o 2
n o o o o o
o - o~ /
n n n
D @ w0 D
.- N .- N R "
> > - >
= = =
o |l= ==~ = /_/ =
o o oS —
b T T T T T d T T T T T i T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
y y y

Fig. 2. Plots of the re-parameterized PDF stated from (2.3) for indicated values of ., 6 and 7.

where 0 <y < 1, ¢ > 0,60 > 0and §eR, H(z) = 1/[1 +
exp(-z)], with x; (8) being the 100 tth quantile of the power nor-
mal distribution. When & = 1, the power Johnson SB distribution
reduces to the Johnson SB distribution. The lack of a simple for-
mula for the mean of the power Johnson SB distribution inhibits
the construction of a regression model, but its median has a sim-
ple form. From the expression defined in (2.8), the parameter «
can be expressed as o« = h~'(n) = x:(8) — @ H (), such
that w is, for a fixed and known value 7, the 100 rth quantile of
the distribution of Y.

The third model considers the Johnson-t distribution. This dis-
tribution is obtained by replacing X ~ N(0,1) by X ~ t(v) when
generating the Johnson SB distribution, where X ~ t(v) means that
the random variable X follows the Student-t distribution with v >
0 degrees of freedom. Then, by the transformation

-1

=freen[ (5]

we obtain that Y follows a Johnson-t distribution. The correspond-
ing PDF, CDF and QF of Y are established, respectively, as

0 viB(3.5)

f; a, 0)= v+ [a+0 l(y)]z}#, (2.9)

F(y: o, 0) = %[1 + signfa + 6 I(Y)][l - Im(a+9hﬁy>><%’%)”'

Qr: a. 0) = [1 + exp (_wﬂ’]’

. (2.10)

where 0 < y < 1, v represents the degrees of freedom, o € R
is the location parameter, and & > 0 is the dispersion parameter,
with Qx(t) being the 100 tth quantile of the Student-t distribu-
tion. Also, note that I(y) = logly/(1 — y)], m(z) = z/(v +z2), and
Iy(a,b) = B(y; a, b)/B(a, b) is the regularized incomplete beta func-
tion, with B(a, b) and B(y; a, b) being the incomplete and complete
beta functions, respectively. From the expression defined in (2.10),
the parameter « can be re-parameterized as « = h~'(p) =
—log[(1 — Ww)/] @ — Qx(t), such that w is, for a fixed and
known value 7, the 100 tth quantile of the distribution of Y. Moti-
vated by the presence of zeros or ones, a new class of zero-or-one
inflated distributions was introduced using a mixture of two mod-
els: a generalized Johnson SB distribution and a degenerate distri-
bution at a known value ¢, where ¢ = 0 or ¢ = 1, depending on the
case. Thus, the PDF takes the form stated as k(y; v, i, 0, t) =
v,ify=cor k(y; v, w, 6, 7) = (1 — v) f(y: n, 6, 1), if
y € (0,1), where f is the re-parameterized generalized Johnson
SB PDE.

2.3. The unit-Birnbaum-Saunders distribution

The Birnbaum-Saunders distribution [77,76,81] is often consid-
ered as a life distribution due to its origins in fatigue of materials.
Hence, this distribution assumes a prominent role in the areas of
reliability and survival analysis, being a good alternative to tradi-
tional distributions. In addition, the Birnbaum-Saunders distribu-
tion has been considered as a model for tumor growth [68] among
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Fig. 3. Plots of the re-parameterized PDF stated from (2.11) for indicated values of w, # and .

other biomedical applications. The unit-Birnbaum-Saunders model
[82] is obtained from the transformation Y = exp(—X), where X ~
BS(«, 8), which denotes a Birnbaum-Saunders distributed random
variable [69]. The PDF, CDF and QF of X are written, respectively,
as

f; a, 6)

12 3/2
_ 1 o« o
N |: log O’):| < log (J/)>
1 log (¥) o
exp{wz[2+ ™ +log(y)“’

. B 1 log(y) : a 7%
Fpio0) =1-0( [_ ! } _[_log(y)] ,

(2.11)

20

Observe that o nor 6 have a direct interpretation in terms
of the observed data. For example, « is no longer the median
as in the distribution of X. However, from the expression de-
fined in (2.12), the parameter o can be re-parameterized as o =
h=1(n) = log(w) IO, T), where

10, 1) = —%{2+[9 o1 —z)]2

-0 11 -1)/4+6 &-1(1 71)},

such that p is, for a fixed and known value 7, the 100 tth quantile
of the distribution of Y.

Q(t:a,0) =expq —

(212)

24[001(1-T) —0®-1(1 - 1)/4+[00-1(1 1)

where0 <y < 1,0 > 0Oand o > O.

Note that § = exp(—«) is the median of the distribution of Y,
since F(8; «,6) = 0.5 and the rth moment, for re {1,2,...}, of Y
is given by

1+2ra92+«/1+2ra92ex <1—¢1+2ra92>

o |
= 2(1+2 1« 62) 62

Plots of the PDF for the re-parameterized unit-Birnbaum-
Saunders distribution using several values w, 6 and 7 are given in
Fig. 3. Note that increasing values of 8 also increases the negative
asymmetry. As | increases, the variance decreases and the curves
tend to become unimodal for all values of t. In addition, observe
that, when varying 7, the PDF takes different shapes.
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Fig. 4. Plots of the re-parameterized PDF stated from (2.15) for indicated values of |, § and 7.

Two examples with real data were provided in [77] related to
political sciences and sports medicine. For comparison purposes, in
addition to the unit-Birnbaum-Saunders quantile regression model,
the Kumaraswamy, L-logistic, log-extended exponential-geometric,
unit-Burr-XII, unit-Chen, unit-half-normal, and unit-Weibull quan-
tile regression models were also considered. Both of these exam-
ples reported a performance superior to all of the competing mod-
els, giving evidence that the unit-Birnbaum-Saunders distribution
is an excellent alternative for quantile modeling and for dealing
with bounded data into the unit interval. For parameter estima-
tion, model selection and diagnostics based on the unit-Birnbaum-
Saunders distribution, the codes are available at https://github.
com/AndrMenezes/unitBSQuantReg and by the unitBSQuantReg
package of R [81].

2.4. The unit-half-normal distribution
The unit-half-normal model [5] is obtained from the transfor-
mation Y = X/(1 +X), where X ~ HN(«), which denotes a half-

normal distributed random variable [26]. The corresponding PDF,
CDF and QF of Y are formulated, respectively, as

o 2 y
Joren = a(l —y>2¢<a<1 w)’

o) — y _
F(y,a)_2d><a(1y)> 1,

(213)

w1 (4

Q(t ) = W’ (2.14)

where 0 < y < 1and ¢ > 0. The rth moment of Y is given by

X
ry r
EY) =« E(71+01X)’ re{l,2,...}.

From the expression defined in (2.14), the parameter « can be
re-parameterized as

v
(1—p) @ 1([r +1]/2)°

such that w is, for a fixed and known value 7, the 100 rth quan-
tile of the distribution of Y. In [5], the unit-half-normal distribu-
tion outperformed the fit obtained by the unit-logistic, unit-Lindley
[76], Kumaraswamy and beta distributions considering image data.

An extension of the unit-half-normal distribution may be ob-
tained taking the generalized half-normal distribution as baseline
[21]. Considering the transformation Y = X/(1 +X), where now
X ~ GHN(«, 0) denotes a generalized half-normal distributed ran-
dom variable with CDF given by F (x; &, 8) = 2&[— (x/a)?] — 1, the
PDF, CDF and QF of Y are presented, respectively, as

2 0 vy 7T 1 y 17
osor= (2t s ] oo Alsa] )

(2.15)

a =h'(p =
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Fig. 5. Plots of the re-parameterized PDF stated from (2.17) for indicated values of ., 6 and t.

F(y:a,0) = 2 ( )

Q(z:a,0) = o [@(5h)] ,
1+a [0 (53]

To evaluate the effect of covariates on the quantile of the dis-
tribution, the parameter « can be expressed as

o = hi] (U-') = " 10

A -w[e-1([r +1]/2)]

such that p is, for a fixed and known value 7, the 100 tth quantile
of the distribution of Y. For # =1, we have the unit-half-normal
distribution considered in [5]. In addition, from the transforma-
tion Y = exp(—X), where X ~ GHN(«, 6), we have another gener-
alized unit-half-normal distribution with PDF, CDF and QF written,
respectively, as

0 20
0 log (y) 1| log(y)
Jo:e.0) = fy[ log(y)][_ a ]exP<_2[_ o ] )
(2.17)
| _log (v) ’
> ,

Q(t:,0) = exp {oe [—613*1 (%)] ' }

0 <y <1 (2.16)

F(y;a,0) = 20

(2.18)

where 0 < y < 1. From the expression defined in (2.18),
the parameter « can be re-parameterized as « = h™'(p) =

—log(p)[®1 (1/2)]_1/9, such that w is, for a fixed and known
value 7, the 100 tth quantile of the distribution of Y.

Plots of the PDFs stated in (2.15) and (2.17) for the re-
parameterized generalized unit-half-normal distribution, with sev-
eral values of |, 6 and t, are given in Figs. 5 and 4, respectively. In
the second column of Fig. 5, we see the behavior of the unit-half-
normal distribution, whose PDF shapes are unimodal and asym-
metrical (skewed to the left and to the right). These shapes make
the unit-half-normal distribution flexible to model proportion data
in many applied sciences. Note that these two extensions of the
unit-half-normal have not been considered in the literature.

2.5. The Vasicek distribution

The Vasicek distribution was proposed in [123] and used, for
the first time, in [80] to model the mean and quantiles conditional
on covariates. A random variable Y with bounded support (0,1) is
Vasicek distributed if its PDF, CDF, and QF are written, respectively,
as

fya.0) = 122

i VT -0 (@)
oofifor- () ]

(2.19)
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Fig. 6. Plots of the re-parameterized PDF stated from (2.19) for indicated values of |, 6§ and t.
To the best of our knowledge, the Vasicek distribution was used
1 (Y)VT =0 — D1 () fqr. the first time in [80] to estimate quantiles and means con-
Fy:a,0) =0 N . ditional on covariates. In that work, the authors presented appli-
cations to medical and political data. In the first application, the
(o) + @' (7)VO Vasicek quantile regression model outperformed the models based
Q(t;,0) = @ , (2.20) R o
1—-0 on the Johnson SB, Kumaraswamy, unit-logistic, and unit-Weibull

where y > 0 and o, & < 1. Note that 6 is a shape parameter
and the mean and variance of Y are, respectively, given by

E(Y)=a, Var(Y)=,(07 (). @' (@).0) —a?,

where

1 a b x2 —2cxy + y?

vxebo =z [ [ o ( 20-0) )dyd"'

As stated in [123], the PDF defined in (2.19) is unimodal
with mode at ®[®1(a)(1-60)"2/(1-20)], when 0 < 0.5;
monotone when 6 =0.5; and U-shaped when 6 > 0.5. Note
that we can easily assess the effect of covariates on the mean
of the distribution of Y through some appropriate link func-
tion for «. Moreover, from the expression defined in (2.20), we
may re-parameterize o in terms of the 100 tth quantile, 7 ¢
(0,1) namely, using the expression o = h~1(pn) = ®[O~1(n)(1 -
012 — &-1(7)01/2], where  is, for a fixed value of 7, the 1007th
quantile of the distribution of Y Fig. 6 shows some possible shapes
of the re-parameterized PDF stated in (2.19) for selected values of
W, 6 and t.

distributions. In the second one, the Vasicek mean regression out-
performed the fits obtained by beta [32] and simplex [119] regres-
sions. Parameter estimation, model selection and diagnostics are
available on the vasicekreg R package [75]. Notice that the lit-
erature on the Vasicek distribution is rather scarce and it is typi-
cally used to model economic data.

3. Parametric quantile regressions for non-Gaussian-related
bounded responses

In this section, by using a similar presentation structure to
Section 2, we introduce parametric quantile regression mod-
els for non-Gaussian-related bounded responses based on the
arcsecant hyperbolic Weibull [64], Kumaraswamy [92], Lambert-
uniform [49], L-logistic [99], log-extended exponential-geometric
[52], transmuted unit-Rayleigh [63], unit-Bur-XII [61], unit-Chen
[59], unit-Gompertz [79], unit-Gumbel [78], and unit-Weibull
[85] distributions.
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Fig. 7. Plots of the re-parameterized PDF stated from (3.21) for indicated values of |, # and 7.

3.1. The arcsecant hyperbolic Weibull distribution

The arcsecant hyperbolic Weibull model [64] is obtained from
Y = sech(X), where X ~ Weibull(«, #), which denotes a Weibull
distributed random variable with CDF given by Fx(x;«,6) =
exp(—ax?) [126]. The corresponding PDF, CDF and QF of Y are
written, respectively, as

o

fie.0) = ———
yW1-y?

arcsech(y)?~" exp [ -« arcsech(y)? ],

(3.21)

F(y;a,0) = exp [-a arcsech(y)’],

1
O(t;,0) = sech([—a* log(r)]g), (3.22)
where 0 < y < 1 and arcsech(y) = log[(1 + (1 —y2)1/2)/y]. Note
that « > O is the rate parameter, while & > 0 is the shape pa-
rameter and does not has a direct interpretation in terms of the
observed data.

For quantile regression, the parameter « presented in (3.22) can
be re-parameterized as ¢« = h l(n) = —log(r)/arcsech(u)e,
such that w is, for a fixed and known value 7, the 100 tth quan-
tile of the distribution of Y. Plots of the re-parameterized arcsecant
hyperbolic Weibull distribution PDF for several values |, 6 and t
are given in Fig. 7.

3.2. The Kumaraswamy distribution

The Kumaraswamy model with support in the interval (a,b)
was proposed in [67]. The particular case for the interval (0,1)
can be obtained from the transformation Y =exp(—X), where
X ~ EE(x,0), which denotes an exponentiated-exponential dis-
tributed random variable [42] with CDF given by F (x; «,0) = [1 —
exp(—0x)]¥. Considering the interval (0,1), the corresponding PDF,
CDF and QF of Y are expressed, respectively, as

f@ia,0) =y’ (1 -y, (3.23)
Fyia.0) =1-(1-y"),
Qr:a,0) = [1 —a —r)%]g, (3.24)

where0 < y < 1and @, & > 0 are shape parameters.
The mean and variance of Y are, respectively, given by

E(Y) = aB(l + é,a),

Var(Y) = otB(l + %,a) - [—otB(l + é,ot)]z,

where, as mentioned, B(a, b) is the beta function.

The available formula for E(Y) makes a mean-based re-
parameterization unfeasible and then o nor 6 have a direct in-
terpretation in terms of the observed data. For example, 6 is no
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Fig. 8. Plots of the re-parameterized PDF stated from (3.23) for indicated values of p, 6 and 7.

longer a rate parameter as in the distribution of X. In contrast, o
and 6 can be re-parameterized according to a quantile. Note from
[92] that a re-parameterization in « is more advantageous. Thus,
from the expression defined in (3.24), the parameter « may be ex-
pressed as @ = h=1(n) = log(1—1)/log(1 —n?), such that p
is, for a fixed and known value t, the 100 tth quantile of the
distribution of Y. Fig. 8 shows some possible shapes of the re-
parameterized Kumaraswamy PDF for selected values of w, 8 and
T. The figure illustrates well how flexible and versatile the Ku-
maraswamy distribution is.

In [92], a Kumaraswamy regression model was proposed con-
sidering only the median, but the model can be extended to other
quantiles. The authors did not consider applications for the pro-
posed model, but several applications may be found in the liter-
ature for comparative purposes. For example, in [77], this model
was applied for two data sets related to political science and sports
medicine. In [85], this model was applied to three data sets: the
first one related to the stem cell recovery rate; the second one
was on the access of families to piped water supply in Brazil-
ian cities in the Southeast and Northeast regions; and the third
one on the cost effectiveness of risk management. In [63], the
educational level of countries of the Organization for Economic
Co-operation and Development (OECD) is studied [28]. The trans-
muted Kumaraswamy distribution was proposed in [55]. A new
quantile parametric mixed regression model for bounded response
was presented in [10], whereas in [105] a Kumaraswamy regres-
sion model was introduced with an Aranda-Ordaz link function. A

10

mode regression model for this distribution was analyzed in [91],
wheres in [43] a Kumaraswamy regression to model bounded out-
come scores was considered. An extension of the Kumaraswamy
quantile regression model to couple extremes zero and one was
presented in [9]. Considering that the continuous part follows a
re-parameterized Kumaraswamy distribution, the proposed inflated
model mixes the continuous and discrete parts. Therefore, their re-
spective PDF and CDF are given by

U(l*C)’ lfyzoy
gy;iv, i, 0,1) = Ve, ify=1;
(1-v) fy;w.0,7) ifye(0,1);

(3.25)

G v 1,0, 7) =v (1-0)+v ¢ [y ) + (1 = v) F@; 1,0, 7);
(3.26)

where 0 < v < 1 is the mixture parameter, c is the probability of
a Bernoulli distributed random variable, f is the re-parameterized
Kumaraswamy PDF, and I, is the indicator function that equals one
if y € A and zero otherwise. The proposed model was used in [9] to
analyze the impacts of several conditioning variables on the pro-
portion of people that live in households with inadequate water
supply and sewage in Brazil. Since nearly 17% of the Brazilian mu-
nicipalities no one lives in households with inadequate water sup-
ply and sewage, the data display inflation at zero.
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Fig. 10. Plots of the re-parameterized PDF stated from (3.30) for indicated values of ., 0 and 7.

3.3. The Lambert-uniform distribution

The Lambert-uniform model [49] has one parameter and is
helpful to describel bounded data from a PDF with a monotonic
(increasing or decreasing) behavior. This distribution arises directly
from the Lambert-F generator [48] when considering a uniform
baseline distribution. The corresponding PDF, CDF and QF of Y are
established, respectively, as

f:a) =a’[1 —log(a)(1-y)]. (3.27)

1

Fy;a) =1-(1-y)o¥
1 log(a)(t - 1) . .
0(t; ) = log(a)W°|: a :| +1, ifo € 0,1)uU(l,e);

T, ifa=1;

(3.28)

where 0 < y < 1, e~2.718 is the Euler number, 0 < o < eis
a shape parameter and W is the principal branch of the Lambert-
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Fig. 11. Plots of the re-parameterized PDF stated from (3.32) for indicated values of p, 6 and t.

W function [22]. The Lambert-uniform mean is given by
o —1-log(x)

log(a)?

'3 ifoo=1.

In the formula stated in (3.29), observe that the mean of the
Lambert-uniform distribution has a closed form. However, despite
this, the shape parameter o cannot be expressed explicitly as a
function of the mean, which is a major drawback to formulate a
regression model and quantify the effect of the covariates on the
mean response. Also, & can be explicitly formulated as a function
of the 100 tth quantile, which permits us to re-parameterize the
Lambert-uniform distribution in terms of this quantile and, conse-
quently, to establish a quantile regression in a simple way.

From the expression defined in (3.28), note that o may be
re-parameterized as o = [(1 —1)/(1 —w)]V¥, such that p is, for
a fixed value of 7, the 100 tth quantile of the distribution of
Y. Plots of the re-parameterized Lambert-uniform PDF for sev-
eral values  and 7 are given in Fig. 9. A model considering
the Lambert-uniform distribution was analyzed in [49] outper-
forming the models considering the Kumaraswamy and arcsecant-
hyperbolic-normal distributions based on data on cost effective-
ness of risk management.

, ifae(0,1)u(l,e);

E(Y) = (3.29)

3.4. The log-extended exponential-geometric distribution

The log-extended exponential-geometric model [52] is obtained
from the transformation Y = exp(—X), where X ~ EEG(«, 8), which

12

denotes an extended exponential-geometric distributed random
variable [1]. The corresponding PDF, CDF and QF of Y are given,
respectively, as

01 +a)yf!

fy;a,0) (3.30)
(1+ay?)’
0
Foie0) = G0,
T 1
Qt:a,0) = (m)s (3.31)

where 0 <y < 1, ¢ > 0 and 6 > -1. From the expres-
sion defined in (3.31), the parameter @ can be re-parameterized
asa=h"1(w)=—-[(1=tpn="?)/(1 = 1)], such that | is, for a fixed
and known value 7, the 100 tth quantile of the distribution of
Y. Fig. 10 shows some possible shapes of the re-parameterized
log-extended exponential-geometric PDF for selected values of .,
6 and t. This model has as special cases the power function
and uniform distributions. In [52], a log-extended exponential-
geometric model was proposed and compared with the beta model
in an application on the cost effectiveness of risk management.
In this application, the best fit was obtained by the log-extended
exponential-geometric model.
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Fig. 12. Plots of the re-parameterized PDF stated from (3.34) for indicated values of w, 6 and .

3.5. The L-logistic distribution

The L-logistic model [121] is obtained from Y =(1+
exp{—[(X —a)/0]})"!, where X ~Log(0,1), which denotes a
standard logistic distributed random variable [6]. The corre-
sponding PDF, CDF and QF of Y are expressed, respectively, as

v 0-1
f(y;ot,@) — Qexp(a)(lfy) -

[1 +exp(a)(1yfy)9]

(3.32)

) (3.33)

f(y:oz,@):w

exp [~ log(y)?]{-1-6 + 260 exp [-a log(y)*]}.

where 0 < ¥y < 1, > 0and 8 > 0. To formulate a quantile
regression, « defined in (3.33) must be re-parameterized as

a=h"1(L) =log (%) —0log (ﬁ)

such that p is, for a fixed and known value 7, the 100 tth quantile
of the distribution of Y. Plots of the re-parameterized L-logistic PDF
for several values W, 6 and t are given in Fig. 11. A closed form
was stated in [99] for the moments of the L-logistic distribution,
which involves the multivariate Wright generalized hypergeomet-
ric function. In [99], a L-logistic quantile regression model was car-
ried out on the relationship between vulnerability to poverty and
anxiety. In this study, the beta regression model was also consid-
ered. The regression model considering the L-logistic distribution
provided a better fit than the beta regression model for all the cri-
teria stated [124].

3.6. The transmuted unit-Rayleigh distribution

The transmuted unit-Rayleigh model [63] is based on the unit-
Rayleigh distribution proposed in [7] combined with the quadratic
transmutation scheme used in [116,15]. The corresponding PDF,
CDF and QF of Y are formulated, respectively, as

(3.34)

F(y;,0) = exp {—a[—log(y)]z}(l +6 —0Oexp {fa[flog(y)]z})

Q(t;a,0) =exp —oz‘%\/—log[(l+9—\/(1+9)2—491)/(29)] ,

(3.35)
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Fig. 13. Plots of the re-parameterized PDF stated from (3.36) for indicated values of |1, @ and t.

where 0 < y < 1, « > 0 and 6 e[-1,1] is the shape
parameter. From the expression defined in (3.35), the parame-
ter o can be re-parameterized as o = —log[1+6 — ((1+6)2 —
4071)1/2/(20)]/1og()?, such that w is, for a fixed and known
value 7, the 100 tth quantile of the distribution of Y. Plots of the
re-parameterized transmuted unit-Rayleigh PDF for several values
W, 6 and t are given in Fig. 12. Note that these shapes may be
decreasing as well as unimodal with various skewed forms.

An application was considered in [64] to measure the educa-
tional level of OECD countries related to the covariates as life sat-
isfaction, homicide rate, and voter turnout. The application indi-
cated that the transmuted unit-Rayleigh quantile regression model
provided a better fit than the beta and Kumaraswamy regression
models[27].

3.7. The unit-Burr-XII distribution

The unit-Burr-XII model [61] is obtained from the transfor-
mation Y = exp(—X), where X ~ Burr-Xll(«, ), which denotes
a Burr-XII distributed random variable [16] with CDF given by
FK&a,0)=1-(1 +x"‘)’9. The corresponding PDF, CDF and QF of
Y are written, respectively, as

fi.6) = S log) {1+ [-log0)} . (336)
Fy;a,0) = {1+ [—log(v)]“}_e,
Q(t;a,0) = exp |:(tfl’ - 1)@, (3.37)

14

where 0 < ¥y < 1 and «, & > 0 are shape parameters. Note
that, when y — 0, f(y; ®,6) — +oo for all the values of ¢ > 0
and & > 0. Wheny—1,ifa > 1, f(y;a,0) - +oo; if a =1,
f:a,0) - 0;and ifa < 1, f(y;a,0) — 0.

As with other distributions mentioned, in this case, « nor 6
have a direct interpretation in terms of the observed data. How-
ever, it is possible to re-parameterize both parameters as a func-
tion of the 100 tth quantile. In [61], the parameter « is expressed
as

» log (=7 — 1)
@ == g log ol

As shown in [61], the conditions 7 > 2 and p > exp(-1),
either T < 2% and | < exp(—1), must be satisfied. Therefore,
for some values of t, given these parameters combinations, it was
not possible to display the shapes of the PDF. We can get more
flexible shapes for the PDF stated in (3.36) re-parameterizing 6 as

log (")
log [1 + log (&)a] .

Fig. 13 shows some possible shapes of this re-parameterized
PDF for selected values of w, o and 7. In [108], it was considered
the transformation Z=1-Y and the re-parameterization defined
in (3.38), where Y follows the unit-Burr-XII distribution with PDF
stated in (3.36).

0=h"1() = (3.38)
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Fig. 14. Plots of the re-parameterized PDF stated from (3.39) for indicated values of ., 6 and t.

3.8. The unit-Chen distribution

The unit-Chen model [59] is obtained from the transforma-
tion Y = exp (—X), where X ~ Chen(«, 8), which denotes a Chen
distributed random variable [19] with CDF given by Fy(x;«,0) =
1 — exp{a[1 — exp(x?)]}. The PDF, CDF and QF of Y are written, re-
spectively, as

Fia0) = So[-logw)l"" exp | [~ log 1’}

exp [a (1 — exp {[— log(y)]e })] (3.39)
F(y;,0) = expla(1 - exp{[—log»)]’ D],
Q(t;«,60) = exp —{log |:1 - loi(r)} }9) (3.40)

where 0 < y < 1,and «, & > 0 are shape parameters. From
the expression defined in (3.40), the parameter o can be re-
parameterized as

1

C(Zh_1(ll/)= Og(t) p ,
1-exp (- log )1’}

such that p is, for a fixed and known value 7, the 100 tth quan-
tile of the distribution of Y. Plots of the re-parameterized unit-

Chen PDF for several values u, 6 and 7 are given in Fig. 14. This
figure shows that the unit-Chen distribution has left and right
skewed shapes as well as bathtub shape. In [59], the importance
of the unit-Chen model is shown through an application with real-
world data on the rate of stem cell recovery and compared with a
Kumaraswamy model considering only the median. For this appli-
cation, the unit-Chen model showed better performance than the
Kumaraswamy model.

3.9. The unit-Gompertz distribution

The unit-Gompertz distribution [83] is obtained from the trans-
formation Y = exp(-X), where X ~ GO(«,6), which denotes a
Gompertz distributed random variable with CDF established by
Fc(x;a,0) =1 —exp{a[1 —exp(6x)]}. The corresponding PDF, CDF
and QF of Y are stated as

fyia.0)=aby " Dexpa(1-y?)], (3.41)
F(y;a,0) = exp[a(1-y™)],
Q(t;a,0) = [1 - loi(r)]_"’ (3.42)



J. Mazucheli, B. Alves, A.EB. Menezes et al.

Computer Methods and Programs in Biomedicine 221 (2022) 106816

(=3 (=3 o
2 =040 — 1=0.75 2 S
1=0.25 =0.90
- 1=0.50 = -
s e | w2 | w2
N o N oS N o
o o o
n n n
3o 3o 3o /
s ® )| o2 o 2
n o o o o o
oS - o~
n n / n
D @ w0 @ W
- N P
2° 2° z° \
= = =
g | == — s |~ g | j ==
e T T T T T i T T T T e T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
y y y
(=3 (=3 o
S S S
GO o T
o~ o~ - o~
i v o v o
o o o
n n n
EXp T o s
S8 s 8 s ® -
n o o o o o
o - o~
n n n
T8 8 | 28 4
=" [\ / z° > ~
= — = =
N | % | o —| % | ||
S | e S S |
e T T T T T e T T T T T d T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
y y y
(=3 (=3 o
S S S
wo~ w~ | w~ |
~N o ~N o ~N o
o o o
n n n
3o T o =2
o2 o2 o2
n o o o o o
o - o~
n n n i
D@ W @ w0 @ W
- - ~ N ]
2 || ==opf | #° = | & W\
. / = o 7 =
S L S - S
e T T T T T i T T T T T e T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
y y y

Fig. 15. Plots of the re-parameterized PDF stated from (3.41) for indicated values of w, # and t.

where 0 < y< 1, ¢ > 0 and 6 > 0. The mean of a unit-
Gompertz distributed random variable Y is given as

E(Y) = ob exp(a)F(T, 05),

where T'(a,b) = [;° t~lexp(—t)dt is the upper incomplete
gamma function. To find the variance, consider Var(Y) =
fol [Q(t;,0) — E(Y)]zdr, which depends on a term formulated as

Jr(t52).

Note that o nor 6 have a direct interpretation in terms of
the observed data. For example, 6 is no longer a rate parame-
ter as in the distribution of X. However, from the expression de-
fined in (3.42), the parameter o can be re-parameterized as o =
h=1(w) =log(t)/(1 — n=?), such that w is, for a fixed and known
value 7, the 100 tth quantile of the distribution of Y. Similarly,
we may re-parameterize § as 6 = h~1(pn) = —[1/log(p)]log[1 —
log(t)/a]. We can easily verify that, by re-parameterizing o, we
have a large number of shapes for the PDF [79]. Fig. 15 shows some
possible shapes of the re-parameterized unit-Gompertz PDF for se-
lected values of ., 6 and .

The unit-Gompertz quantile regression was used in [79] to an-
alyze data of plants where ammonia is oxidized to nitric acid.

1
/ [Q(z: &, 0)]PdT = 20 exp (2a)F<9;l,
0

Its fit was compared with the Kumaraswamy, Johnson SB, unit-
Birnbaum-Saunders, unit-logistic, and unit-Weibull distributions.
Parameter estimation, model selection, and diagnostics of these
models are available on the ugomquantreg R package [74]. Be-
sides the unit-Gompertz quantile regression, other works appeared
in the literature considering the unit-Gompertz model. In [50,51],
this model was employed for estimating the reliability of a multi-
component stress-strength system. By using lower record values
and inter-record times, inference procedures for estimating the pa-
rameters and predicting future record values were presented in
[4,66,83] including some interesting properties.

A characterization of the unit-Gompertz distribution using trun-
cated moments was introduced in [4], while a collection of para-
metric modal regression models was presented in [91], including
the unit-Gompertz distribution. Furthermore, a unit-Gompertz dis-
tribution different from the one proposed in [83] was stated in
[39].

3.10. The unit-Gumbel distribution

The unit-Gumbel distribution [78] is obtained from Y =
exp[(X —a)/0]/{1 + exp[(X —«)/6]}, where X ~SG(0,1), which
denotes a standard Type-l Gumbel distributed random variable
with CDF given by F = exp[—x — exp (—x)] [40]. The correspond-
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Fig. 16. Plots of the re-parameterized PDF stated from (3.43) for indicated values of ., 6 and t.

ing PDF, CDF and QF of Y are written, respectively, as

o0 = s oo~ (125) e -t (25|

F(y,a,0) = exp|:exp(ot)<1_y>0i|,

y
1
[7 10g1(r) ] ’
1
exp (§) + [~ ]’

where 0 < y < 1, while & > 0 and o € R are shape parameters.
From the expression defined in (3.44), the parameter « can be re-
parameterized as o = h=' () = 0 log[ (1 — ) /] + log[—1/log(T)],
such that p is, for a fixed and known value 7, the 100 tth quantile
of the distribution of Y. Fig. 16 shows some possible shapes of the
re-parameterized unit-Gumbel PDF for selected values of ., 8 and
T.

Q(t;,0) = , (3.44)

3.11. The unit-Weibull distribution

The unit-Weibull distribution [84,85] is obtained from the
transformation Y = exp (—X), where X ~ Weibull(«, 8), which de-
notes a Weibull distributed random variable with CDF given by

17

(3.43)

Fx(x; o0, 6) = exp(—ax?) [126]. The corresponding PDF, CDF and QF
of Y are written, respectively, as

f@i0) = %ae[— log)I'" exp {-al-Tog)1'}.  (3.45)
Fosa.6) = exp {-a[-10g))’ .
Q(t:a,6) = exp —[—logoff)]e , (3.46)

where 0 < y < 1, whilea > 0and & > 0 are shape parame-
ters.

Special cases of the unit-Weibull distributions include the uni-
form distribution over the interval (0,1) when o =6 =1, the
power function distribution when 6 = 1, and the unit-Rayleigh dis-
tribution when 6 = 2.

Note that @ nor 6 have a direct interpretation in terms of
the observed data. For example, « is no longer a scale param-
eter as in the distribution of X. However, from the expression
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Fig. 17. Plots of the re-parameterized PDF stated from (3.45) for indicated values of |, 6 and 7.

defined in (3.46), the parameter o can be re-parameterized as
a=h"1(p) = —log(r)/[—log(u)]g, such that p is, for a fixed and
known value 7, the 100tth quantile of the distribution of Y. Plots
of the re-parameterized unit-Weibull PDF for several values , 6
and t are given in Fig. 17. The PDF can assume different shapes
(decreasing, increasing, unimodal, anti-unimodal) according to the
values of its parameters.

In [85], three real-world data sets were analyzed for illustra-
tive and model comparison purposes. The first application was re-
lated to the rate of recovery of stem cells; the second one was
on the access of families to the supply of piped water in Brazil-
ian cities in the Southeast and Northeast regions; and the third
one was based on cost effectiveness of risk management. For these
data sets, the unit-Weibull quantile regression model outperformed
the Kumaraswamy and beta models according to three information
criteria [124].

A Hausdorff approximation of the Heaviside step function was
studied in [47] by a family of the unit-Weibull cumulative sig-
moids. In [39], two new families were proposed: the unit ex-
tended Weibull and complementary unit extended Weibull distri-
butions. In [90], three approaches were presented for bias reduc-
tion of the ML estimators of the unit-Weibull distribution parame-
ters. The first approach is the analytical methodology suggested in
[24]; the second one is based on parametric bootstrap resampling

18

method; and the third one is the preventive approach introduced
in [33]. Motivated by the presence of zeros or ones in proportion
responses, an extension of the unit-Weibull quantile regression for
the interval [0,1) or (0,1] was proposed in [89,91]. They assumed
that the continuous mechanism is described by a re-parameterized
unit-Weibull distribution, while the discrete component is a degen-
erate distribution in a known value c either zero or one. Under this
approach, the PDF and CDF of the inflated unit-Weibull distribution
in c is given by

) _ v, ify=c
mey:v.p.0.7) - = {(1—v)f(y;u,9,t), if y € (0,1);
(3.47)
M(y; v, i, 0,7) =vIcy) + (1 - V)Fy; .0, 7); (348)

where I,(y) is the indicator function above mentioned, whereas
v e (0,1) is a mixture parameter, and f(y; ,6,7),F(y; .0, 7)
are the PDF and CDF of the re-parameterized unit-Weibull distri-
bution. Notice that the random variable Y follows a unit-Weibull
distribution with probability 1 — v and it follows a degenerate dis-
tribution in ¢ with probability v.
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Fig. 18. Plots of the re-parameterized PDF stated from (4.49) for indicated values of ., 6 and t.

4. Parametric quantile regressions for continuous positive and
discrete responses

In this section, we discuss and present quantile regressions
for continuous positive and discrete responses. For these distribu-
tions, the literature on parametric quantile regression formulated
by the re-parameterization approach is scarce. We cite the mod-
els based on the continuous Birnbaum-Saunders [3,15,73,110,111],
flexible Weibull [103], logistic Nadarajah-Haghighi [100], and log-
symmetric [72,114] distributions, as well as the discrete generalized
half-normal distribution [34,38].

The main characteristics of these distributions are presented
from the next subsection. However, although not discussed in this
paper, we can also mention the quantile regression model based on
the gamma-sinh-Cauchy distribution [37], generalized gamma dis-
tribution [97,98] and asymmetric Laplace distribution [129]. Note
that we do not present the characteristics of these distributions
since their respective regression models are not formulated from
re-parameterizations, as it happens with all the others distribu-
tions discussed in this paper.

4.1. The Birnbaum-Saunders distribution

Let Y be a Birnbaum-Saunders distributed random variable.
Then, the corresponding PDF, CDF and QF of Y are given, respec-
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tively, by
o =t (5 4 (3)]
ool (2 +3-))
en=ofd [0}
Q(t:a,0) = %[9@*1 (1) +m]2, (4.50)

wherey > 0, o > 0 is a scale parameter, and # > 0 is a shape
parameter. The mean and variance of Y are stated, respectively, as
E(Y) =a(1+62%/2) and Var(Y) = (af)%(1 + 5/462).

Note that we can easily assess the effect of covariates on
the mean of the distribution of Y through some appropri-
ate link function [68,71]. However, in many situations, model-
ing the effect of covariates on quantiles of the response can
be also of interest. From the expression defined in (4.50),
we may re-parameterize « in terms of the 100 tth quantile,
7 €(0,1) namely, as o = h=1() = 4 /[0~ () + (2P~ 1(7)? +
4)1/2]2, This re-parameterization was considered in [110,111]. A
geostatistical model based on a new approach to quantile regres-
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Fig. 19. Plots of the re-parameterized PDF stated from (4.51) for indicated values of p, 6 and t.
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Fig. 20. Plots of the re-parameterized PDF stated from (4.57) for indicated values of i and t.

sion considering the Birnbaum-Saunders distribution was derived
in [70,35].

4.2. The flexible Weibull distribution

The flexible Weibull distribution [11] has two parameters: o >
0 and € > 0. A flexible Weibull distributed random variable Y has
CDF, PDF and QF given by

fa0)=(60+ ) exp[(6v- ) —exp(0v-T)]. (51
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F(y;a,0) =1 —exp [—exp <9y— %)]
£+ /€2 1+ 40a

Q(t;a,0) = 50 ,

wherey > 0,& =log[-log(1—-7)]and # > 0, @ > O are shape
parameters.

To study the relationship between the response variable and
covariates in survival studies, a re-parameterization in terms of
the median was introduced in [103], so that a re-parameterization
in terms of all quantiles can be considered. From the expression
defined in (4.52), the parameter o may be re-parameterized as

(4.52)
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a=h"1(p) =[2no — )2 — £2]/(46), such that w is, for a fixed
and known value 7, the 100 tth quantile of the distribution of
Y. A quantile regression model and its diagnostic analytics for
a Weibull distributed response with applications to engineering
problems was presented in [112].

4.3. The logistic Nadarajah-Haghighi distribution

The logistic Nadarajah-Haghighi model [100] is suitable to de-
scribe random variables with positive support, such as time fail-
ures. It is derived by inserting the Nadarajah-Haghighi distribution
[94] as the baseline model in the logistic-X class [121] of distri-
butions. Let Y be a logistic Nadarajah-Haghighi distributed random
variable. Then, the corresponding PDF, CDF and QF of Y are written,
respectively, as

ab8(1 +ay)’ [ +ay)’ 1]

F:a,0,8) = . (4.53)
{1+[(1+oey)9—1] }
9_ (S
Fy:.0.8) = [(1+ay)’ —1] )
1+ [ +ay)’ 1]
Q(r;a,9,8)=;{[H(]fr)&]gq}, (4.54)

where y > 0, « > 0 is the rate parameter and & >0, § > 0
are shape parameters. For the parameter 6, the logistic Nadarajah-
Haghighi family of models contains as one of its members to the
logistic-exponential case. If § = 1, we have the Lomax distribution
as particular case. If U has a standard uniform distribution, then
Q(U) has PDF given by (4.53).

A parametric regression model for right-censored data was con-
structed in [100] based on a median re-parmeterization of the lo-
gistic Nadarajah-Haghighi distribution. For that purpose, they re-
parameterized the formula given in (4.53) in terms of the median,
denoted by W, which is obtained by setting T = 0.5 in the expres-
sion stated in (4.54) and then o = (1/1)(21/¢ —1).

4.4. The class of log-symmetric distributions

The family of log-symmetric models [72,114,122] comprises sev-
eral members that are generally used in the description of contin-
uous, strictly positive and asymmetric data. This family also ac-
commodates the possibility to model bimodal and/or light and
heavy-tailed data. Log-symmetric distributions are obtained from
the transformation Y = exp(X), where X ~ S(«, 6), which denotes
a symmetric distributed random variable [114]. The corresponding
PDF, CDF and QF of Y are defined, respectively, as

w0y= 5 g1 - 2
fia.0) = g gllog v - log @) . (455)
FO:0.0) = Fy(5llog ) ~log @)1,
Q(t;,0) = xexp (\/ng), (4.56)

where y > 0, « > 0 is the scale parameter, 8 > 0 is
the power parameter, f; is the PDF generator kernel possibly
associated with an additional parameter ¥ (or parameter vec-
tor #), £ is a normalizing constant, with F(w) =& /" g(z?)dz
and z,:Fgfl(r) being the 100 tth quantile of a symmet-
ric distribution. Some members of the log-symmetric family
of distributions obtained from different f; stated in (4.55) are
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the extended Birnbaum-Saunders, extended Birnbaum-Saunders-
t, log-contaminated-normal, log-hyperbolic, log-normal, log-power-
exponential, log-slash, and log-Student-t cases. From the expres-
sion defined in (4.56), the parameter o can be re-parameterized
as a =h1(n) = w/exp(@/2z;), such that p is, for a fixed and
known value t, the 100 tth quantile of the distribution of Y. This
strategy was used in [114].

4.5. The discrete generalized half-normal distribution

The discrete generalized half-normal model [86] is obtained
from the transformation Y = P(X = k) = Sx(k) — Sx(k+ 1), where
Sx denotes the survival function of a random variable X, where X ~
GHN(«, 8), which denotes a generalized half-normal distributed
random variable [21]. The corresponding probability mass function,
CDF and QF of the discrete generalized half-normal distribution, for
a random variable Y, are formulated, respectively, as

0 0
Fy:a,0) = 2{@[@’(’;1) }-@[(ﬁ) “ (457)
1 0
F(y:a,0) :2@[(%) }—1,
Qt:a.0) = {a[¢1(rz]>g} —1J, (4.58)

where y € {0,1,...} and |a] denotes the floor function (integer
part) of the number a € R. The r-th moment of Y is given by

E(Y")=2 gy@{@[(y;])q —<1>[(3)’{)9} } re{l.2,...).
(4.59)

From the expression defined in (4.59), note that the mean
does not appear expressed in a closed form allowing simple re-
parameterization. However, based on [34], considering 7 = 0.5 in
(4.58), we can re-parameterize o as

1+p
0.6745"%"
such that p is the median of the distribution of Y.

A median regression model of the discrete generalized half-
normal was applied in [34] to the healthcare and compared with
three other models: Poisson, negative binomial and generalized
Poisson. A second application was considered with data on auto-
mobile insurance rate-making, in which the model was compared
with the Poisson and negative binomial models. These applications
showed that the discrete generalized half-normal model provided
a better fit than the other models considered.

a=h"(n) =

5. Regression, model fitting, computational implementation,
and applications

In this section, we describe, for the two-parameters distribu-
tions presented previously, the general ML estimation method in
a similar manner as for generalized linear models. In addition,
we introduce some details regarding the unitquantreg pack-
age used for parameters estimation, as well as model selection
and diagnostics. The models use a parametric regression approach
where both location and shape parameters of the conditional dis-
tribution of the response are described employing covariates. The
unitquantreg package is implemented in the framework of the
stats: :1lm package. Therefore, most methods and packages that
utilize this structure are also applied to it. Package and vignette
are available from the GitHub at
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https://github.com/AndrMenezes/unitquantreg

and may be downloaded and installed via
devtools::install_github(’’AndrMenezes/unitquantreg’’)

A full view of the package may be reached from the link
https://andrmenezes.github.io/unitquantreg/index.html

Lastly, we illustrate how the models residing in the unitquantreg package can be fitted.

5.1. Regression modeling

Suppose that the response Y;, for 0 < Y; < 1, with i e {1,...,n}, is modeled considering the observed values x; = (1,%;,...,x;)" and
zi=(1,zq,... ,zl-q)T of the covariate vectors of both location and shape parameters of the conditional distribution of the response. We
are interested in evaluating the effects of these covariates on both w and 6 (w is, for a fixed t, the 100 tth quantile of Y and @ is the
shape parameter). For ML parameter estimation, we have the observed values y = (yq, ..., yn)T from the vector of n independent random
variables Y = (Y;,...,Y)T. Then, let us assume the equations stated as
g1() =mi = Bo+ Bixin + - + BpXip (5.60)
and
82(0) = & =80 + 81zin + -+ - + 8qZigs (5.61)

which relate p; and 6; to the linear predictions 7; and ¢;, respectively. Furthermore, consider that Y;|x;,z; ~ F(y;; i, 6;), where F is the
CDF of a two-parameter distribution. We assume that g; and g, are strictly monotonic, twice differentiable functions that map the 100 rth
quantile p; and 6; to the line of real numbers [29] p. 228]. Suitable choices of g; are the following link functions used in generalized linear
models [87]: (i) the inverse CDF of the logistic (logit link); (ii) standard normal (probit link); (iii) minimum extreme-value (complementary
log-log link); (iv) maximum extreme-value (log-log link); and (v) Cauchy (Cauchit link). Furthermore, the shape parameter 6; must be
positive and the link function g, is, for example, the logarithm or square-root links [88]. It is important to note that x and z can be
identical or they could be subsets of each other.

To obtain the ML estimates of the model parameters, we need the first-order and second-order partial derivatives of the logarithm of
the corresponding likelihood function. For the observed response i, y; namely, with i € {1,..., n}, the log-likelihood function is given by

¢ =£;(®) =log[f(y;; O, %;, z;, T)], such that the score equations are defined as
8(,’ _ 851 BM, 87], 8[, _% % %

9B; oW om; 9B’ 878]‘_ 00; 9¢g 96;°
for je{l,....(p+1)} and © = (B.8), where B=(By.,...,Bp) is a (p+1) x 1 parameter vector associated with a covariate matrix

Xnx(ps1) and 8=(8p,...,8¢) is a (q+1) x 1 parameter vector associated with a covariate matrix Z,, (g+1)- Considering the full log-
likelihood function, we have the score vectors for @ written, respectively, as

a¢ T . a¢ T .

9B = X"diag(W,. )&, 75 = Z"diag(Wjy)&;,

where diag is an n x n diagonal matrix,

T T
9w Ohn .| 0¢ a¢ | 961 06y .| 0e 9
WM—[anl,...,ann], eu—[au],...,aun] ) W6—|:8§_1,-~~,8Cn1|, 33—[891,”.,89“] .

For the Hessian matrix, we have the expressions stated as
9%¢
9BIB"
9%¢
3898"

and

d%¢
aBas"

where
i | 9% 02%¢ i | 0% 02¢ i | 0% 02£(0©)
MET B0 Oadika |T P T | 86810817 88,08, |1 M0 T | 91881 91Lnddy |

5.2. Computational implementation

= X" diag(#,,,, )diag(W}. )X,

= Z' diag(iss)diag(W3)Z

= X' diag(#,,5)diag(W,, ) diag(W;)Z

The ML estimates (ﬁo,..., Ep) and (30,...,3(,) can be obtained, for instance, through general-purpose optimization algorithms as
Nelder-Mead, quasi-Newton and conjugate-gradient available in the optim function of the stats package of R [106]; see [23] for a
study on ten computational algorithms in the estimation of parameters for a class of regression models. In the study performed in [23],
the controlled random search, differential evolutionary, DIRECT, DIRECT _L, evolutionary, genetic, memetic, particle swarm, self-adapted
evolutionary, and simulated annealing methods were evaluated by using the Monte Carlo simulation method with the R software. In that
study, four algorithms presented satisfactory results (differential evolutionary, simulated annealing, stochastic ranking evolutionary, and
controlled random search algorithms, with the latter one having the best performance). The optim function failed in most cases, but
when it was successful, it is more accurate and faster than the others. The annealing algorithm obtained satisfactory estimates in viable
time with few failures so that we recommend its use when the optim function it fails.
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As mentioned, to obtain the ML estimates, we developed the unitquantreg package. The quantile regression models fitted by
unitquantreg take the baseline distributions: (i) arcsecant hyperbolic Weibull, (ii) Johnson SB, (iii) Kumaraswamy, (iv) log-extended
exponential-geometric, (v) unit-Birnbaum-Saunders, (vi) unit-Burr-XII, (vii) unit-Chen, (viii) unit-Gompertz, (ix) unit-Gumbel, (x) unit-
logistic, (xi) unit-Weibull, and (xii-xiii) two versions of the unit generalized half-normal. These 13 distributions implemented in the
unitquantreg package follow the standard naming convention of R, where names of CDF, PDF, QF and random generation functions
follow the d, p, q, and r prefixes, as it is usual in the R software. For example, for the unit-Weibull distribution, we define:

duweibull(x, mu, theta, tau = 0.5, log = FALSE)

puweibull(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
quweibull(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
ruweibull(n, mu, theta, tau = 0.5)

These and all other d, p, q, and r functions are vectorized and coded in C++ using the Rcpp package [30,31]. The main function of
the unitquatreg package, unitquantreg() namely, works similarly to the functions 1m(), glm(), betareg(), simplexreg(),
gamlss (), cdfquantreg() as follows:

unitquantreg(formula, data, subset, na.action, tau, family,
link = c("logit", "probit", "cloglog", "cauchit"),
link.theta = c("log", "sqrt", "identity"), start = NULL,
control = unitquantreg.control(), model = TRUE, x = FALSE, y = TRUE)

In the same way, for example, in the simplexreg package [132], the regression model can be specified via an R package named
Formula [131]. Thus, to specify both quantile and shape equations stated as in (5.60) and (5.61), we define formula = y ~ x1 + x2|
z1 + z2, where y ~ x1 + x2 specifies the quantile model with covariates z1 and z2 being related to the shape parameter. Without
the latter part, the model formula = y ~ x1 + x2 is fitted. Note that, for g; given in (5.60), we have the four options:

link = c(’’logit’’, ’’probit’’, ’’cloglog’’, ’’cauchit’’),
while for g, given in (5.61), we have the options:

link.theta = c(’’log’’, ’’sqrt’’, ’’identity’’).

Methods for extracting information from the returned S3 class object named unitquantreg, such as for the generic functions coef,
print, plot and summary, are available. Next, the methods within the unitquantreg class are listed:

> methods(class = "unitquantreg")
[1] coef confint fitted hnp logLik model.frame model.matrix
[8] plot predict print residuals summary terms update  vcov

In particular, the model parameters are estimated by the ML method using the optimx package [96], which is a general-purpose
optimization wrapper function that calls other R tools for optimization, including the existing optim function [23]. The main ad-
vantage of optimx is to unify the tools allowing a number of different optimization methods and providing sanity checks. The
unitquantreg.control command, behind the control argument, handles the fitting process and its default values are:

method hessian gradient maxit factr trace dowarn starttests fnscale

"L-BFGS-B" "FALSE" "TRUE" "5000" "1e+07" "O" "FALSE" "FALSE" "
whereas its two most important arguments are: hessian and gradient, which control the optimx whether it should use the analytical
Hessian matrices and the analytical score vectors, respectively. For all available distributions, the Hessian matrices and the score vectors
are implemented in C++ for more accurate estimates and computation performance. Starting values for the vector parameter § may be
user-supplied, otherwise the starting values for B are estimated from the quantile regression model, where the response is defined as
¥ =g (¥;), being g; the link function for the quantile parameter y.

The rq function from the quantreg package [56] is employed to obtain the starting values. For §;, with je {1,...,q}, the initial
values are setting as 0.1 for the logarithm link function, and 1.1 for the inverse and square roots link functions. The standard errors (SEs)
are obtained employing the observed Fisher information matrix, which is computed from the inverse of the analytical Hessian matrix
implemented in C++. For numerical stability, the inverse of Hessian matrix is calculated using a Cholesky decomposition.

The uniquantreg function checks if the optimization algorithm converged. If it fails, the warning message “optimization failed to
converge” is printed and the user must be care about the results. Furthermore, the Karush-Kuhn-Tucker optimality conditions are checked
by the optimx: :optimx function. If some of these conditions is not satisfied, then a warning message is also printed. The package
computes the Moore-Penrose inverse if the final Hessian matrix is full rank, but it has at least one negative eigen-value.

The distribution of the response is defined by the family argument, and the following names can used for its members:

families <- c("arc-secant hyperbolic Weibull" = "ashw",
"Johnson-SB" = "johnsonsb",
"Kumaraswamy" = "kum",
"log-extended exponential-geometric" = "leeg",
"unit-Birnbaum-Saunders" = "ubs",
"unit-Burr-XII" = "uburrxii",
"unit-Chen" = "uchen",
"unit-generalized half-normal-E" = "ughne",
"unit-generalized half-normal-X" = "ughnx",
"unit-Gompertz" = "ugompertz",
"unit-Gumbel" = "ugumbel",
"unit-logistic" = "ulogistic",
"unit-Weibull" = "uweibull")
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Table 1

Summary of univariate statistics for bodyfat data set.
Variable (by level) Mean SD Min Max Q1 Q2 Q3 CS CK
arms 0.266 0.111 0.042 0.547 0.181 0.261 0.344 0.157 -0.772
arms (by F) 0.340 0.087 0.119 0.547 0.282 0.338 0.407 -0.096 2.414
arms (by M) 0.191 0.078 0.042 0418 0.136 0.188 0.242 0.361 2.793
arms (by A) 0.236 0.113 0.042 0.490 0.143 0.219 0.321 0.382 2.185
arms (by I) 0.283 0.094 0.074 0.488 0.225 0.290 0.344 0.096 2.716
arms (by S) 0.324 0.100 1.132 0.547 0.244 0.329 0.405 0.139 2.152
age 46.000 19.879 18.000 87.000 25.000 47.000 65.000 0.158 -1.359
bmi 24.716 3.151 18.500 29.900 22.300 24.900 27.200 -0.101 -0.943

where F: female, M: male, A: active, I: insufficiently active, S: sedentary, SD: standard deviation, CS: coefficient of skewness, CK: coefficient of variation, Qi: ith quartile,
with i e {1,2,3}

Table 2
Spearman correlation coefficient (with the corresponding p-value under the null
hypothesis Hy: p = 0) for the indicated variables.

Variable bmi age
arms 0.381 (<0.001) 0.464 (<0.001)
bmi 0.470 (<0.001)

Model diagnostics, including theoretical quantile versus empirical quantile (QQ) plots with simulated envelopes [94] for the Cox-Snell
and normalized quantile residuals are available. The normalized quantile residual [29] is defined by 7; = ®~1[F(y;; [t;. 6))], forie {1,.. ., nh
If the model is correctly specified, then 7; has an approximate standard normal distribution. In addition, stating 7; = —log[1 — F(y;; iL;, 6))],
we have the estimated Cox-Snell residuals. The important property of the Cox-Snell residual is that if the model selected fits the data
adequately, 7; follows the standard exponential distribution.

Methods to compare two fitted models and model selection criteria are available by the functions vuong.test() and
likelihood_stats(), respectively. The vuong.test () was designed to implement the Vuong test when comparing non-nested mod-
els [125], while 1ikelihood_stats() has a variety of likelihood-based information criteria [44,115,124,2] for model diagnostics.

5.3. Biomedical application I with Brazilian data

Next, we consider a real-world data set first reported in [102] that was also analyzed in [77]. This data set contains 298 observations
about body fat percentage of individuals assisted in a public hospital in Curitiba, Parand, Brazil. The fat percentages at android, arms,
gynecoid, legs, and body correspond to the five responses, and the data set is composed of two continuous and two categorical covariates.
Continuous covariates refer to the age (in years) and body mass index (bmi, in kg/m? ) of the individuals, while the categorical covariates
are related to gender (female or male) and ipaq (active, insufficiently active or sedentary patient). As described in [12], the ipaq is a
questionnaire that allows us to obtain data about the weekly time spent on physical activities of moderate and strong intensity, in different
contexts of daily life, such as: housework, leisure, transportation, and work, as well as the time spent in passive activities performed on
the seating position. The bodyfat data set is stored in the dataframe unitquantreg: :bodyfat. The four first rows of this dataframe
are presented as:

> library("unitquantreg")

> data("bodyfat", package = "unitquantreg")
> head(bodyfat)

arms legs body android gynecoid bmi age sex ipaq
1 0.163 0.234 0.238 0.295 0.314 -3.916 -28 male insufficiently active
2 0.331 0.335 0.366  0.432 0.431 0.584 -28 female active
3 0.252 0.312 0.179  0.169 0.354 -2.616 -28 female active
4 0.094 0.172 0.206  0.251 0.272 -2.316 -28 male active

where bmi is centered at 24.72 (the average bmi), age is centered at 46.00 (the average age) and sex and ipaq are, as mentioned, categorical
variables with two and three levels, respectively.

Now, we present an exploratory data analysis for all continuous variables in bodyfat data set. Tables 1 and 2, respectively, report
univariate descriptive statistics for each variable and pairwise Spearman correlation coefficients for these variables. Figure 21 shows his-
tograms and scatter-plots for the variables: arms, age and bmi. Note that the response has a symmetric empirical distribution between
0.042 and 0.547, which can be well modeled by several members of the family of models proposed in our R package. Also, observe that all
the correlations are statistically significant at 1%. On the one hand, the significant correlations between the response and the continuous
covariates bmi and age support the formulation of a regression model. However, on the other hand, the significant correlation between
bmi and age could indicate a collinearity problem which is analyzed when the regression models are stated.

In what follows, we explore the functional relationship between the covariates and the body fat at arms through 13 quantile regression
models. For a fixed t = 0.5, let us assume that the functional relationship between ;, 6; and the linear predictors are given by

logit(;) = Bo + B1 bmi; + B, age; + B3 sexmale; + B, ipaqinsufficientlyactive; + Bsipaqactive;;
log(6;) = do;
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where “sexmale = 1 is utilized for “sex = male and “sexmale = 0 for “sex = female; “ipaqinsufficientlyactive = 1 is employed for “ipaq
insufficiently active and “ipaqginsufficientlyactive = 0 for “ipaq = sedentary, whereas “ipaqactive = 1 is used for “ipaq = active and
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Body mass index (in kg/m * 2)

Body mass index (in kg/m A 2)

Fig. 21. Histograms and scatter-plots for bodyfat in arms data set.

“ipaqactive = 0 for “ipaq = sedentary. To simultaneously fit all available models, we can use, for example,

> models <- c("ashw", "johnsonsb", "kum", "leeg", "ubs", "uburrxii", "uchen",
"ughne", "ughnx", "ugompertz", "ugumbel", "ulogistic", "uweibull")
> fits  <- lapply(1:13, function(i) unitquantreg(arms ~ age + bmi + sex + ipaq,

family = models[i], link = "logit", link.theta

"10g" s

tau = 0.5, data = bodyfat))
which creates a list for each of the distributions and each of these lists contains 23 objects (? unitquantreg: :unitquantreg for
more details) named as:

> names (sapply (fits[[5]], mode))

[1] "family" "coefficients" "fitted.values" '"linear.predictors"
[6] "link" "tau" "loglik" "gradient"
[9] "wvcov" "nobs" "npar" "df .residual"

[13] "theta_const" '"control" "iterations" "converged"

[17] "kkt" "elapsed_time" "call" "formula"

[21] "terms" "model" y!
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Considering all distributions available in the unitquantreg package, the ML estimates, the SEs of their corresponding estimators for
the parameters, and the p-values of the associated tests, can be obtained using the following instructions:

> lapply(fits, function(x) round(rbind(mle = coef(x), se = sqrt(diag(vcov(x))),
p.value = summary(x)$coeftable[,4]), 3))

$ashw

(Intercept) age bmi sexmale ipaginsufficiently active ipagactive log(theta)
mle -0.476 0.005 0.082 -0.898 -0.125 -0.332 2.137
se 0.045 0.001 0.007  0.038 0.053 0.052 0.040
p.value 0.000 0.000 0.000  0.000 0.017 0.000 0.000
$johnsonsb

(Intercept) age bmi sexmale ipaginsufficiently active ipagactive log(theta)
mle -0.470 0.005 0.092 -0.938 -0.117 -0.263 1.174
se 0.047 0.001 0.007  0.037 0.054 0.052 0.041
p.value 0.000 0.000 0.000  0.000 0.031 0.000 0.000
$kum

(Intercept) age bmi sexmale ipaqginsufficiently active ipaqactive log(theta)
mle -0.530 0.004 0.082 -0.820 -0.076 -0.216 1.553
se 0.049 0.001 0.006  0.037 0.054 0.053 0.045
p.value 0.000 0.000 0.000  0.000 0.154 0.000 0.000
$leeg

(Intercept) age bmi sexmale ipaginsufficiently active ipagactive log(theta)
mle -0.450 0.005 0.093 -0.957 -0.131 -0.257 2.032
se 0.049 0.001 0.007 0.039 0.056 0.052 0.049
p.value 0.000 0.000 0.000  0.000 0.019 0.000 0.000
$ubs

(Intercept) age bmi sexmale ipaginsufficiently active ipagactive log(theta)
mle -0.485 0.004 0.086 -0.895 -0.115 -0.242 -1.836
se 0.040 0.001 0.006  0.035 0.048 0.047 0.041
p.value 0.000 0.000 0.000  0.000 0.016 0.000 0.000
$uburrxii

(Intercept) age bmi sexmale ipaqginsufficiently active ipaqactive log(theta)
mle -0.506 0.004 0.053 -0.565 -0.083 -0.160 2.439
se 0.036 0.001 0.007 0.051 0.042 0.043 0.070
p.value 0.000 0.008 0.000 0.000 0.047 0.000 0.000
$uchen

(Intercept) age bmi sexmale ipaginsufficiently active ipaqactive log(theta)
mle -0.283 0.007 0.114 -1.138 -0.138 -0.387 0.593
se 0.075 0.002 0.010 0.056 0.086 0.084 0.022
p.value 0.000 0.000 0.000 0.000 0.108 0.000 0.000
$ughne

(Intercept) age bmi sexmale ipaqinsufficiently active ipaqactive log(theta)
mle -0.481 0.005 0.072 -0.833 -0.135 -0.382 1.452
se 0.043 0.001 0.006  0.037 0.050 0.051 0.043
p.value 0.000 0.000 0.000  0.000 0.006 0.000 0.000
$ughnx

(Intercept) age bmi sexmale ipaginsufficiently active ipaqactive log(theta)
mle -0.504 0.004 0.080 -0.799 -0.098 -0.227 0.963
se 0.045 0.001 0.006  0.035 0.049 0.050 0.044
p.value 0.000 0.000 0.000  0.000 0.045 0.000 0.000
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$ugompertz
(Intercept)
mle -0.362
se 0.060
p.value 0.000
$ugumbel
(Intercept)
mle -0.438
se 0.050
p.value 0.000
$ulogistic
(Intercept)
mle -0.475
se 0.043
p.value 0.000
$uweibull
(Intercept)
mle -0.494
se 0.042
p.value 0.000

0.
0.
0.
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age

.006
.001
.000

age

.006
.001
.000

age

.005
.001
.000

age
005
001
000

0.
0.
0.

bmi

.104
.008
.000

bmi

.092
.007
.000

bmi

.089
.007
.000

bmi
o77
006
000

sexmale
-1.057
0.044
0.000

sexmale
-0.97
0.04
0.00

sexmale
-0.932
0.036
0.000

sexmale
-0.863
0.037
0.000

ipaqinsufficiently

ipaginsufficiently

ipaginsufficiently

ipaginsufficiently

active
-0.148
0.068
0.029

active
-0.130
0.058
0.026

active
-0.122
0.051
0.017

active
-0.121
0.050
0.014
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ipagactive log(theta)

-0.385
0.066
0.000

1.308
0.042
0.000

ipaqactive log(theta)

-0.354
0.058
0.000

1.092
0.040
0.000

ipagactive log(theta)

-0.239
0.048
0.000

1.761
0.049
0.000

ipaqgactive log(theta)

-0.32
0.05
0.00

1.789
0.041
0.000

From the above results reported for all the models, in general, similar values are obtained in terms of significance at 5%, only the
Kumaraswamy and unit-Chen models have a slightly different value in the covariate “ipaq (insufficiently active)”.

For model selection, the function likelihood_stats() computes and reports various statistics to indicate how well the esti-
mated model fits the data. We consider the following criteria: Neg2LogLike = —21log(L), AIC = —2log(L) + 2p [2], BIC = —2log(L) + plog(n)
[115] and HQIC = —2log(L) + 2plog[log(n)] [44], where L, n and p are, respectively, the maximized likelihood function, the sample size and
the number of model parameters estimated, whereas the acronyms AIC, BIC and HQIC indicate the Akaike, Bayesian, and Hannan-Quinn in-
formation criteria, respectively; see more details in [124]. In general, when you are comparing candidate models, smaller Neg2LogLike, AIC,
BIC and HQIC statistics indicate a better fitting model. For further details on likelihood-based statistics for model selection, we recommend

[17,20].

If likelihood_stats(1lt = fits) is applied to the list fits, then it returns:

Likelihood-based statistics of fit for unit quantile regression models

Call:

likelihood_stats(lt

arc-secant hyperbolic Weibull

Johnson-SB
Kumaraswamy

log-extended exponential-geometric
unit-Birnbaum-Saunders

unit-Burr-XII
unit-Chen

unit-generalized half-normal-X
unit-generalized half-normal-E

unit-Gompertz
unit-Gumbel
unit-logistic
unit-Weibull

According to the values of these statistics, the structure based on

the bodyfat data set.

fits)

Neg2LogLike AIC BIC

-844.298 -830.298 -804.418
-897.967 -883.967 -858.088
-859.030 -845.030 -819.151
-867.814 -853.814 -827.934
-923.332 -909.332 -883.452
-661.098 -647.098 -621.218
-705.722 -691.722 -665.843
-858.130 -844.130 -818.250
-808.135 -794.135 -768.256
=771.300 -757.300 -731.420
-814.947 -800.947 -775.067
-902.401 -888.401 -862.522
-854.932 -840.932 -815.052
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HQIC

-819.
-873.
-834.
-843.
-898.
-636.
-681.
-833.
-783.
-746.
-790.
-878.
-830.

938
608
671
454
972
738
363
771
776
941
588
042
573

the unit-Birnbaum-Saunders distribution is the best model that fits
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Table 3

Coefficient of determination (R?) for bodyfat data set.
Distribution R?
unit-logistic 0.7773
unit-Birnbaum-Saunders 0.7751
unit-Gumbel 0.7715
log-extended exponential-geometric 0.7678
Johnson-SB 0.7689
arc-secant hyperbolic Weibull 0.7641
unit-Gompertz 0.7558
unit-Weibull 0.7578
unit-generalized half-normal-E 0.7465
unit-generalized half-normal-X 0.7323
Kumaraswamy 0.7219
unit-Chen 0.6967
unit-Burr-XII 0.5202

Before statistically analyzing the unit-Birnbaum-Saunders quantile regression model, we must evaluate the possible collinearity prob-
lem detected in the exploratory data analysis. A more formal and often used approach to measuring correlation between covariates
is the variance inflation factor (VIF). If VIF > 10, then collinearity could exist [104,112]. Note that once we define vcov, terms and
model .matrix, we can employ the vif function, available in the car package [53], for computing the VIF and detecting multicollinear-
ity. For the unit-Birnbaum-Saunders model, we have:

> car::vif(fits[[51])
GVIF Df GVIF~(1/(2%Df))

age 1.638593 1 1.280075

bmi 1.400078 1 1.183249

sex 1.065376 1 1.032171

ipaq 1.264615 2 1.060449

Therefore, as all the VIF values are less than 10, then we can continue with our quantile regression analysis based on the unit-
Birnbaum-Saunders distributions; otherwise, we should refit the models consequently. In the unit-Birnbaum-Saunders case, by using
summary (fits[[5]]), we obtain:

Wald-tests for unit-Birnbaum-Saunders quantile regression model
Call: unitquantreg(formula = arms ~ age + bmi + sex + ipaq, data = bodyfat,

tau = 0.5, family = "ubs", link = "logit", link.theta = "log")
Mu coefficients: (quantile model with logit link and tau = 0.5):

Estimate SE z-value Pr(Z>|zl)

(intercept) -0.485445 0.039953 -12.150 < 2e-16 *x**
age 0.004355 0.001091  3.990 6.60e-05 *x*x
bmi 0.085517  0.006277 13.623 < 2e-16 **x
sexmale -0.895046  0.035443 -25.253 < 2e-16 ***
ipaginsufficiently active -0.115179  0.047879 -2.406 0.0161 *
ipagactive -0.242332 0.046505 -5.211 1.88e-07 x***
Signif. codes: 0 ‘**x’ <0001 ‘**’ <0.01 ‘x’<0.05 ¢, > <01 ‘ns’<1

Model with constant shape:
Estimate SE z-value Pr(Z>|zl)

log(theta) -1.83575 0.04096 -44.82 <2e-16 ***

Residual degrees of freedom: 291

Log-likelihood: 461.6659; Number of iterations: 116

Analogously to the coefficient of determination R? in ordinary regression models, we can compute it in the context of parametric
quantile regression [25,32,95,112]. This coefficient is considered as a global measure of explained variation of a model for its response,
given by R? = 1 — [Lo/Lpq]*", where Ly and Lp,4 denote the likelihood functions for models containing only the intercept and the model
containing the intercept, plus a number of p + q covariates, respectively. Table 3 reports the values of R? considering all distributions for
7 = 0.5. Like the AIC and BIC statistics, R? is most helpful for comparing competing models that are not necessarily nested, with larger
values indicating better models.
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It is important to point out that the unitquantreg() function is very flexible and allows us to use regression splines, through the
ns () function, which is available in the splines package of R. In addition, one might want to look at the gam() function of the mgcv
package [128], which is distributed with R. For further details, see for example [8,45,101]. To permit for non-linearity in the covariate age
and the unit-Birnbaum-Saunders distribution, we can consider:

> model_fitted <- unitquantreg(arms ~ ns(age, df = 3) + bmi + sex + ipaq,
family = "ubs", link = "logit", link.theta = "log",
tau = 0.5, data = bodyfat)

> summary (model_fitted)

Wald-tests for unit-Birnbaum-Saunders quantile regression model
Call: wunitquantreg(formula = arms ~ ns(age, df = 3) + bmi + sex + ipaq,
data = bodyfat, tau = 0.5, family = "ubs",

link = "logit", link.theta = "log")

Mu coefficients: (quantile model with logit link and tau = 0.5):
Estimate SE z-value Pr(Z>|zl|)

(Intercept) -0.605737  0.073065 -8.290 < 2e-16 **x
ns(age, 3)1 0.063247 0.082622 0.766 0.443972
ns(age, 3)2 0.381365 0.168609  2.262 0.023708 *
ns(age, 3)3 0.329510 0.085458  3.856 0.000115 **x*
bmi 0.086967  0.006425 13.535 < 2e-16 **¥x*
sexmale -0.904574  0.036113 -25.049 < 2e-16 **x
ipaginsufficiently active -0.110643 0.048126 -2.299 0.021504 *
ipaqactive -0.235635 0.047189 -4.993 5.93e-07 *xx*
Signif. codes: 0 “¥**’ <0.001 ‘**’ <0.01 ‘x’<0.05 ¢ > <01 ‘ns’<1

Model with constant shape:
Estimate SE z-value Pr(Z>|zl)
log(theta) -1.83857 0.04096 -44.88 <2e-16 *x*x

Signif. codes: 0 Cxxx’ <0001 “*x’ <0.01 ‘%’ <0.05 ¢ 2<01 ‘ns’<1

Residual degrees of freedom: 289

Log-likelihood: 462.4979

Number of iterations: 65

To graphically assess the adequacy of the fitted model, we can generate, as in the hnp package [93], the QQ (half-normal) plot with
simulated envelopes using the Cox-Snell and normalized quantile residuals; see Figure 22. From this figure, we observe the good agreement
between the unit-Birnbaum-Saunders quantile regression model and the bodyfat data set. Then, once again, we can continue with our
quantile regression analysis based on the unit-Birnbaum-Saunders distribution; otherwise, we should refit the models consequently. The
syntax to generate the half-normal plot with simulated envelopes using the Cox-Snell residual is as follows:

> hnp(object, nsim = 99, halfnormal = TRUE, plot = TRUE, output = TRUE,

level = 0.95, resid.type = c(’’quantile’’, ’’cox-snell’’),...)

Observe that the value of B, is the estimate for a female with 46 years old, body mass index equal to 24.72 kg/m? and sedentary.
The parameter estimates for 8; and $, indicate that age and bmi have a positive effect on the percentage of fat in the arms. In contrast,
the parameters 3, B4 and fs are negatively estimated, indicating that this percentage is less for insufficiently active and active men,
respectively. To compute 95% confidence intervals for one or more parameters in a fitted model, we use confint (fits[[5]]), which
returns:

lower limit  upper limit

(intercept) -0.563751859 -0.407138438
age 0.002216026 0.006494468
bmi 0.073213867 0.097819942
sexmale -0.964512508 -0.825579136
ipaginsufficiently active -0.209020809 -0.021337875
ipaqactive -0.333479151 -0.151184209
log(theta) -1.916037287 -1.755470782
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Fig. 22. QQ (half-normal) plots with a simulated envelope of quantile residuals with Brazilian data.
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Point and interval estimates are more helpful if converted to the corresponding values for the odds themselves by exponentiating the
values. In the case of the unit-Birnbaum-Saunders model, we have that:

> exp(coef (fits[[5]11))

(intercept) age bmi
0.6154232 1.0043647 1.0892800
sexmale ipaginsufficiently active ipaqgactive
0.4085889 0.8912063 0.7847958
log(theta)
0.1594932

> exp(confint(fits[[511))
lower limit upper limit

(intercept) 0.5690700 0.6655520
age 1.0022185 1.0065156
bmi 1.0759606 1.1027642
sexmale 0.3811690 0.4379813
ipaginsufficiently active 0.8113784 0.9788882
ipaqactive 0.7164268 0.8596893
log(theta) 0.1471891 0.1728259

Notice that some methods available in the 1lmtest package [130], such as coeftest, coefci, lrtest, waldtest, reset, can
be applied to an object created by the unitquantreg function. These methods show the flexibilidade of this package for: (i) testing a
restricted model versus a full model and (ii) verifying whether a functional structure is reasonable or not. For example:

> Imtest::1lrtest(fits[[5]1])
Likelihood ratio test
Model 1: arms ~ age + bmi + sex + ipaq | 1
Model 2: arms ~ 1 | 1
#Df LogLik Df Chisq Pr(>Chisq)
1 7 461.67
2 2 239.37 -5 444.6 < 2.2e-16 **x*

> lmtest::resettest(fits[[5]])

RESET test

data: fits[[5]]

RESET = 0.037096, dfl = 2, df2 = 290, p-value = 0.9636

returns the likelihood ratio test and Ramsey RESET test [107] for the funcional form, respectively.
Lastly, we may fit a particular distribution (the unit-Birnbaum-Saunders one, for example) for various values of 7, with 0 < 7 < 1,
just like in the quantreg package [56], as well as in the SAS PROC QUANTREG procedure [113], as follows:

unitquantreg(arms ~ age + bmi + sex + ipaq | bmi, family = "ubs",
link = "logit", link.theta = "log", data = bodyfat,
tau = c¢(0.25, 0.50, 0.75))

unit-Birnbaum-Saunders quantile regression model
Call: unitquantreg(formula = arms ~ age + bmi + sex + ipaq | bmi, data = bodyfat,
tau = c(0.25, 0.5, 0.75), family = "ubs", link = "logit",
link.theta = "log")
Mu coefficients (quantile model with logit link):
tau = 0.2500 tau = 0.5000 tau = 0.7500

(intercept) -0.6564 -0.4847 -0.3205
age 0.0046 0.0044 0.0041
bmi 0.0893 0.0855 0.0814
sexmale -0.9512 -0.8967 -0.8496
ipaginsufficiently active -0.1222 -0.1155 -0.1103
ipaqactive -0.2560 -0.2424 -0.2305

Theta coefficients (shape model with log link):

tau = 0.2500 tau = 0.5000 tau = 0.7500

(theta) _(intercept) -1.8344 -1.8357 -1.8372

(theta) _bmi 0.0051 0.0022 -0.0001
where logit(l;) = Bo + B1 age; + B, bmi; + B3 sex; + B4 ipaqinsufficientlyactive; + S5 ipaqactive;
and log(6;) = 8o + 8;bmi;. For interpretation of estimated regression coefficients, we suggest see [65] Ch. 7]. Note that plot (fitubs)
works as the plot.rgs function of the quantreg package. For an overview of all functions available in unitquantreg, use
1s(’’package:unitquantreg’’). The unitquantreg function is being restructured to fit models with responses augmented by
zeros, ones, or zeros and ones, as in [88].
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Table 4

Summary table of univariate statistics for COVID-19 data set.
Variable Mean SD Min Max Q1 Q2 Q3 Skew Kurt
RR 0.975 0.032 0.820 0.999 0.968 0.988 0.997 -2.158 5.220
RR(30) 0.997 0.004 0.981 1.000 0.997 0.998 0.999 -2.454 5.203
RR(90) 0.974 0.030 0.862 0.999 0.971 0.985 0.992 -2.087 4.064
RR(180) 0.955 0.036 0.820 0.994 0.940 0.966 0.978 -1.648 2.906
PD 203.901 265.612 1.286 1,215.198 44.809 107.784 219.942 2.211 4.485
GINI 0.452 0.018 0.419 0.499 0.440 0.453 0.466 0.134 -0.481
BEDS 2.600 0.710 1.600 4.800 2.100 2.450 3.100 0.969 0.564
SR 0.173 0.035 0.089 0.260 0.149 0.172 0.193 0.274 -0.111
PR 0.132 0.028 0.076 0.201 0.107 0.132 0.151 0.455 -0.388
LE 78.696 1.785 74.800 82.300 77.800 79.100 79.900 -0.483 -0.426

Table 5

Spearman correlation coefficient (with the corresponding p-value under the null hypothesis Hy: p = 0) for the indicated variables.
Variable PD GINI BEDS SR PR LE
RR —0.364 (<0.001) —0.310 (<0.001) 0.031 (0.709) 0.060 (0.466) —0.002 (0.806) —0.010 (0.902)
PD 0.549 (<0.001) —0.242 (0.003) —0.295 (<0.001) —-0.076 (0.357) 0.182 (0.026)
GINI 0.033 (0.686) 0.061 (0.455) 0.519 (<0.001) —0.106 (0.198)
BEDS 0.666 (<0.001) 0.308 (<0.001) —0.518 (<0.001)
SR 0.628 (<0.001) —0.889 (<0.001)
PR —0.678 (<0.001)

It is important to emphasize that the objective of this and next subsection is not to present all numerous approaches to variable
selection, regression diagnostics, link function selection or parameter interpretation, but rather suggest the use of the unitquatreg
package for quantile regression.

5.4. Biomedical application Il with COVID-19 recovery rates in the United States

In this example, we consider the data set extracted from [108], available at https://github.com/tatianefribeiro/RUBXII_Regression_
COVID-19/tree/master. Different from [108], we consider the recovery rate (RR) (1-mortality rates) across the 50 US states as the response
variable and the following model is fitted:

logit(;) = ,30 + ﬁ] PD; + ,32 GINL; + ,83 BEDS; + ,34 SR; + ﬂsPRi + ﬂe LE; + ,37 T90 + /33 T180;, (5.62)

where PD is the population density (p/mi%) in 2020; GINI is the Gini coefficient in 2017; BEDS is the hospital beds per 100 thousand
inhabitants in 2018; SR is the smoking rate by state in 2020; PR is the poverty rate in 2020; LE is the life expectancy in 2018; T90 is
a dummy variable that is equal to one if the response corresponds to recovery rate after 90 days of the 10th confirmed case, and zero
otherwise; whereas T180 is a dummy variable that is equal to one if the response corresponds to recovery rate after 180 days of the 10th
confirmed case, and zero otherwise.

Table 4 reports the descriptive measures for continuous variables and for RR measured in the three periods (30, 90, and 180 days).
Table 5 presents the Spearman correlation coefficients. Figure 23 shows histograms and scatter-plots for the variables RR, PD, GINI, BEDS,
SR, PR, and LE. Note that the response has a leptokurtic, asymmetric empirical distribution between 0.820 and 0.999, which can be well
modeled by several members of the family of models proposed in our R package. Also, on the one hand, observe that the response variable
is only correlated statistically at a significant level of 1% to the covariates PD and GINI, so that the other covariates could be discarded
from the model. On the other hand, some covariates present significant correlation that could indicate multicollinearity problems, which
is analyzed when the regression models are stated.

We fit all available models simultaneously, for T = 0.5, as follows:

> models <- c("ashw", "johnsonsb", "kum", "leeg", "ubs", "uburrxii", "uchen",

"ughne", "ughnx", "ugompertz", "ugumbel", "ulogistic", "uweibull")

> fitscovid <- lapply(1:13, function(i) unitquantreg(RR ~ PD + GINI + BEDS +
SR + PR + LE + T90 + T180, family = models[i], link = "logit",
link.theta = "log", tau = 0.5, data = covid))
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Fig. 23. Histograms and scatter-plots for COVID-19 data set.
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ML estimates, SEs of their corresponding estimators for the parameters, and the p-values of the associated tests, can be obtained using

the following instructions:

> lapply(fitscovid, function(x) round(rbind(mle

p.value =

$ashw

(Intercept)
mle 12.640
se 8.409
p.value 0.133
$johnsonsb

(Intercept)
mle -2.609
se 7.993
p.value 0.744
$kum

(Intercept)
mle -6.101
se 4.185
p.value 0.145
$leeg

(Intercept)
mle -3.900
se 7.032
p.value 0.579
$ubs

(Intercept)
mle -7.154
se 8.280
p.value 0.388
$uburrxii

(Intercept)
mle 12.591
se 8.432
p.value 0.135
$uchen

(Intercept)
mle 12.525
se 8.464
p.value 0.139
$ughne

(Intercept)
mle 17.455
se 7.976
p.value 0.029
$ughnx

(Intercept)
mle -28.798
se 6.936
p.value 0.000
$ugompertz

(Intercept)
mle 9.963
se 8.678
p.value 0.251
$ugumbel

(Intercept)
mle 12.535
se 8.412
p.value 0.136
$ulogistic

(Intercept)
mle 0.468
se 7.934
p.value 0.953
$uweibull

(Intercept)
mle 12.563
se 8.450
p.value 0.137

PD
-0.002
.000
.000

PD
.002
.000
.000

PD
-0.002
.000
.000

PD
.002
.000
.000

PD
-0.002
.000
.000

PD
-0.002
.000
.000

PD
-0.002
.000
.000

PD
-0.002
.000
.000

PD
-0.002
.000
.000

PD
-0.002
.000
.000

PD
-0.002
.000
.000

PD
-0.002
.000
.000

PD
-0.002
0.000
0.000

summary (x) $coeftable[,4]1), 3))

coef(x), se

sqrt

(diag(vcov(x))),

GINI BEDS SR PR LE T90 T180 log(theta)
-15.385 0.195 -7.259 0.597 0.016 -1.907 -2.571 1.126
5.426 0.111 4.900 4.644 0.104 0.138 0.142 0.062
0.005 0.078 0.139 0.898 0.875 0.000 0.000 0.000
GINI BEDS SR PR LE  T90 T180 log(theta)
-17.179 0.040 2.229 6.124 0.199 -2.000 -2.833 0.321
5.654 0.108 4.919 4.251 0.096 0.148 0.148 0.058
0.002 0.715 0.650 0.150 0.039 0.000 0.000 0.000
GINI BEDS SR PR LE  T90 T180 log(theta)
-19.044 -0.182 7.253 11.745 0.234 -1.845 -2.275 4.428
2.284 0.092 3.325 2.292 0.052 0.194 0.187 0.092
0.000 0.046 0.029 0.000 0.000 0.000 0.000 0.000
GINI BEDS SR PR LE T90 Ti80 log(theta)
-19.499 -0.074 5.816 8.403 0.219 -2.285 -2.724 4.460
3.560 0.131 5.228 3.429 0.084 0.212 0.205 0.117
0.000 0.575 0.266 0.014 0.009 0.000 0.000 0.000
GINI BEDS SR PR LE  T90 T180 log(theta)
-17.267 0.056 0.563 9.176 0.256 -2.019 -2.891 -0.223
5.923 0.117 5.006 4.362 0.099 0.145 0.153 0.058
0.004 0.634 0.910 0.035 0.010 0.000 0.000 0.000
GINI BEDS SR PR LE  T90 T180 log(theta)
-15.207 0.196 -7.288 0.569 0.016 -1.899 -2.563 0.443
5.451 0.110 4.904 4.673 0.105 0.137 0.142 0.062
0.005 0.076 0.137 0.903 0.879 0.000 0.000 0.000
GINI BEDS SR PR LE T90 Ti80 log(theta)
-15.281 0.194 -7.202 0.584 0.017 -1.902 -2.566 0.434
5.456 0.111 4.933 4.672 0.105 0.138 0.143 0.063
0.005 0.080 0.144 0.900 0.870 0.000 0.000 0.000
GINI BEDS SR PR LE  T90 T180 log(theta)
-14.542 0.251 -10.927 -1.044 -0.042 -1.840 -2.456 0.173
5.250 0.112 4.465 4.942 0.100 0.133 0.142 0.066
0.006 0.025 0.014 0.833 0.675 0.000 0.000 0.009
GINI BEDS SR PR LE T90 T180 log(theta)
-23.392 -0.222 8.718 25.610 0.533 -2.190 -3.208 -0.037
6.264 0.119 3.929 5.006 0.081 0.153 0.154 0.066
0.000 0.061 0.027 0.000 0.000 0.000 0.000 0.573
GINI BEDS SR PR LE T90 T180 log(theta)
-19.182 0.118 -3.551 0.283 0.070 -2.235 -2.827 3.402
4.520 0.129 5.401 4.135 0.103 0.183 0.164 0.160
0.000 0.363 0.511 0.945 0.495 0.000 0.000 0.000
GINI BEDS SR PR LE  T90 Ti80 log(theta)
-15.336 0.194 -7.167 0.538 0.017 -1.909 -2.573 0.429
5.410 0.111 4.914 4.632 0.104 0.138 0.142 0.062
0.005 0.080 0.145 0.908 0.867 0.000 0.000 0.000
GINI BEDS SR PR LE  T90 T180 log(theta)
-16.621 0.042 2.344 5.274 0.157 -2.032 -2.825 0.919
5.395 0.102 5.138 3.940 0.096 0.147 0.140 0.068
0.002 0.683 0.648 0.181 0.102 0.000 0.000 0.000
GINI BEDS SR PR LE T90 Ti80 log(theta)
-15.246 0.195 -7.245 0.580 0.017 -1.899 -2.564 0.438
5.457 0.111 4.920 4.673 0.105 0.138 0.142 0.062
0.005 0.078 0.141 0.901 0.875 0.000 0.000 0.000

From the above results reported for all the models, differently to what happened with the Brazilian data set, the results obtained in
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Table 6

Coefficient of determination (R?) for COVID-19 data set.
Distribution R?
unit-Gompertz 0.8029
unit-logistic 0.7984
Johnson-SB 0.7786
unit-generalized half-normal-X 0.7722
unit-Gumbel 0.7709
arc-secant hyperbolic Weibull 0.7702
unit-Chen 0.7702
unit-Weibull 0.7689
unit-Burr-XII 0.7680
unit-generalized half-normal-E 0.7644
unit-Birnbaum-Saunders 0.7616
log-extended exponential-geometric 0.7570
Kumaraswamy 0.7372

analysis for model selection. By using 1ikelihood_stats(lt = fits), we have the values of the likelihood-based statistics given

by:

Likelihood-based statistics of fit for unit quantile regression models
Call: likelihood_stats(lt = fits)

Neg2LogLike AIC BIC HQIC
arc-secant hyperbolic Weibull -1050.780  -1030.780 -1000.674 -1018.549
Johnson-SB -1055.734  -1035.734 -1005.628 -1023.503
Kumaraswamy -1026.769 -1006.769 -976.663 -994.5380
log-extended exponential-geometric -1044.394  -1024.394 -994.287 -1012.162
unit-Birnbaum-Saunders -1040.872  -1020.872 -990.766 -1008.641
unit-Burr-XII -1049.539  -1029.539 -999.432 -1017.307
unit-Chen -1050.3656  -1030.365 -1000.259 -1018.134
unit-generalized half-normal-E -1040.730  -1020.730 -990.623 -1008.498
unit-generalized half-normal-X -995.2650  -975.2650 -945.159 -963.0340
unit-Gompertz -1051.371  -1031.371 -1001.264 -1019.139
unit-Gumbel -1051.210 -1031.210 -1001.103 -1018.978
unit-logistic -1061.644  -1041.644 -1011.538 -1029.413
unit-Weibull -1049.946  -1029.946 -999.840 -1017.715

which indicates that the unit-logistic quantile regression is the best model according to each of the likelihood-based statistics. This model
selection analysis is supported by a residual graphical study shown in Figure 24. Once again, we can consider the measure R? as a criterion
for comparison between all models. Table 6 reports these results attributing the best fit (highest value) to the unit-Gompertz quantile
regression.

To fit a full unit-logistic model, we have:

> fitcovidulog <- unitquantreg(RR ~ PD + GINI + BEDS + SR + PR + LE + T90 + T180,

family = "ulogistic",
link = "logit", link.theta = "log", tau = 0.5,
data = covid)

From Table 5, we can observe that the correlation coefficient between LE and SR is high. Because correlation coefficients only show
pairwise correlations, once again, we use the VIF to assess what covariates are collinear and should be dropped before starting the analyses.
The resulting VIF values are given below:

> car::vif(fitcovidulog)
PD GINI BEDS SR PR LE T90 T180

2.136667 2.551950 1.740564 6.988683 4.176044 6.791217 1.423759 1.419650

As mentioned, a VIF value that exceeds 10 indicates a problematic potentially amount of collinearity. In this example, the VIF score for
the predictor variables SR and LE are VIF = 6.989 and VIF = 6.791, respectively; so that we must pay attention on these covariates. To find
a set of covariates that does not contain collinearity, we remove one variable at a time, recalculate the VIF values, and repeat this process
until all VIF values are enough small, for example, less than five to be sure no collinearity problems could be present. Then, we consider
the following scenarios for restricted (reduced) unit-logistic quantile regression models:

e Reduced unit-logistic model 1 [excluding the covariate SR]

reduced.l <- unitquantreg(RR ~ PD + GINI + BEDS + PR + LE + T90 + T180,
family = "ulogistic", link = "logit", link.theta = "log",
tau = 0.5, data = covid)

o Reduced unit-logistic model 2 [excluding the covariate LE]

> reduced.2 <- unitquantreg(RR ~ PD + GINI + BEDS + SR + PR + T90 + T180,
family = "ulogistic", link = "logit", link.theta = "log",
tau = 0.5, data = covid)

35



J. Mazucheli, B. Alves, A.EB. Menezes et al.

Computer Methods and Programs in Biomedicine 221 (2022) 106816

0 ashw 3 ohnsonsb 5 5 leeg
© <+ % © - %
s < © © / .
5’
L < © 0 >
o~ a8 o< oS ¥
T T o K T
5 E] S 3
el D S =)
8o 82 8 83
22 23| e Pl
= ] H e
< < s s
S S = S @ S o
o8 o age | ag [l
o - o o
o o o o
5 ] 5 5
S ] e = e
s T T T T T s T T T T T s T T T T S T T T T T
0.000 0717 1.433 2149 2.866 0.000 0717 1433 2149 2.866 0.000 0718 1435 2152 2.870 0.000 0.723 1445 2168 2.891
Theoretical quantiles Theoretical quantiles Theoretical quantiles Theoretical quantiles
2 ubs © uburrxii @ uchen 2 ughne
o x o o ~
< © © ©
= ©o < o
S 1 < S
oK o~ o~ oo
T o T o~ T o T o~
3 3 3 3
il il k-4 =
8g | 83 | g2 | 83 |
o3 o2 22 o2
= = = =
< < < €
< < s s
S w0 I N S 0 3 Q
9 95 95 o3
- =] =3 =]
o o o o
S S S 153
S S S S
o T T T T T o T T T T T o T T T T o T T T T T
0.000 0.717 1.433 2.149 2.866 0.000 0717 1433 2149 2.866 0.000 0.717 1433 2149 2.866 0.000 0.717 1.433 2.149 2.866
Theoretical quantiles Theoretical quantiles Theoretical quantiles Theoretical quantiles
~ ughnx «© ugompertz o ugumbel o Ulogistic
2 ] KA o & 3 i
< o~ >’</ “© “©
= 8 3 =
o5 @0 S oK oS
c ™ o™~ o~ o~
S S F S
3 B b4 b4
83 | 83 | g2 | gg |
g 2 el P
= = = =
c c c c
ot o3 o8 g%
- ] o o
=3 =3 =3 =3
S S S S
e S S 8
o T T T T T o T T T T T o T T T T o T T T T T
0.000 0.717 1.433 2.149 2.866 0.000 0.717 1433 2149 2.866 0.000 0.717 1433 2149 2.866 0.000 0.722 1445 2167 2.889
Theoretical quantiles Theoretical quantiles Theoretical quantiles Theoretical quantiles
o uweibull
&
2
©
o
N
@
o~
=
T
ge
22
=
c
&
3 ®
a8
=}
=3
=3
S 4
=] T T T T T

0.000 0717 1433 2149 2.866
Theoretical quantiles

Fig. 24. QQ (half-normal) plots with a simulated envelope of quantile residuals for COVID-19 data set.

e Reduced unit-logistic model 3 [excluding the covariates SR and LE]

> reduced.3 <- unitquantreg(RR ~ PD + GINI + BEDS + PR + T90 + T180,
family = "ulogistic", link = "logit", link.theta = "log",
tau = 0.5, data = covid)

The VIF values for these models are given, respectively, by

> car::vif(reduced.1)
PD GINI BEDS PR LE T90 T180
2.068567 2.516064 1.183617 4.169128 2.701867 1.393607 1.374571

> car::vif(reduced.2)
PD GINI BEDS SR PR T90 T180
2.016583 2.253713 1.637897 2.888653 3.165383 1.433448 1.422845

> car::vif (reduced.3)
PD GINI BEDS PR T90 T180
2.005546 2.224827 1.120871 2.155601 1.401250 1.379976
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Note that all reduced models (1-3) have small VIE. Now, we can compare the fit of the full unit-logistic model with the reduced models
through the likelihood ratio test as follows:

> lmtest::lrtest(fitcovidulog, reduced.l)
Likelihood ratio test

Model 1: RR ~ PD + GINI + BEDS + SR + PR + LE + T90 + T180 |

Model 2: RR ~ PD + GINI + BEDS + PR + LE + T90 + T180 |
#DF LogLik DF Chisq Pr(>Chisq)

1 10 530.82

2 9 530.64 -1 0.3604

0.5483

> Imtest::lrtest(fitcovidulog, reduced.2)
Likelihood ratio test

Model 1: RR ~ PD + GINI + BEDS + SR + PR + LE + T90 + T180 |

Model 2: RR ~ PD + GINI + BEDS + +SR + PR + T90 + T180 |
#DF LogLik DF Chisq Pr(>Chisq)

1 10 530.82

2 9528.90 -1 3.85

0.04975%

> Imtest::lrtest(full, reduced.3)
Likelihood ratio test

Model 1: RR ~ PD + GINI + BEDS + SR + PR + LE + T90 + T180 |

Model 2: RR ~ PD + GINI + BEDS + PR + T90 + T180 | 1
#DF LogLik DF Chisq Pr(>Chisq)
1 10 530.82
2 8 527.98 -2 5.6765
From these results, we can conclude that there is no practically significant difference at 5% between the four models. We decide
to use Model 3 due to the principle of parsimony. Then, we apply the exponential function to the 95% confidence limits obtaining:

> exp((confint(reduced.3)))

lower limit

(intercept)
PD
GINI

PR

T90

T180
log(theta)

The estimates of the parameters of Model 3, for T = 0.5, are given by:

3
9
1
BEDS 8.
1
9
4
2

.541654e+03
.9755639e-01
.152474e-10

529337e-01

.174452e-03
.837382e-02
.492931e-02
.162510e+00

> summary (reduced.3)
Wald-tests for unit-logistic quantile regression model
Call: wunitquantreg(formula = RR ~ PD + GINI + BEDS + PR + T90 + T180,

data =

covid, tau

0.05853

upper limit

link.theta = "log")

Mu coefficients: (quantile model with logit

(intercept)
PD

GINI

BEDS

PR

T90

T180

Model with constant

log(theta)

Residual degrees of
Log-likelihood: 527

Number of iterations:

1.509526e+07
9.986627e-01
1.183067e-01
1.194588e+00
6.
1
7
2

828848e+01

.748500e-01
.748723e-02
.824666e+00

0.5, family = "ulogistic", link = "logit",

Estimate SE z-value Pr(Z>|zl)

1.235e+01 2.132e+00 5.793 6.91e-09 *x*x*
-1.894e-03 2.834e-04 -6.682 2.3be-11 **x
-1.251e+01 5.293e+00 -2.363 0.0181 *

9.364e-03 8.594e-02 0.109 0.9132
-1.262e+00 2.799e+00 -0.451 0.6521
-2.031e+00 1.467e-01 -13.845 < 2e-16 **x
-2.830e+00 1.390e-01 -20.355 < 2e-16 **x*

shape:

Estimate SE z-value Pr(Z>|zl)
0.90483 0.06814 13.28 <2e-16 **x*

freedom: 142
.9838
73
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link and tau = 0.5):
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Note that the final model is consequent with the conjectures from the exploratory data analysis which indicated that, at a significant
level of 1%, only the covariates PD, GINI, T90 and T180 should be present in the model. Therefore, the fit of the new model built with only
the significant variables is given by:

Wald-tests for unit-Logistic quantile regression model
Call: wunitquantreg(formula = RR ~ PD + GINI + T90 + T180, data = covid,
tau = 0.5, family = "ulogistic",

link = "logit", link.theta = "log")

Mu coefficients: (quantile model with logit link and tau = 0.5):

Estimate SE z-value Pr(Z>|z|)
(Intercept) 1.278e+01 1.743e+00 7.336 2.2e-13 **xx
PD -1.830e-03 2.172e-04 -8.424 < 2e-16 **x
GINI -1.381e+01 3.908e+00 -3.533 0.00041 *x*x
T90 -2.030e+00 1.460e-01 -13.899 < 2e-16 **x
T180 -2.828e+00 1.389e-01 -20.359 < 2e-16 **x
Signif. codes: 0 “**x*x’ <0001 ‘**’ <001 ‘x’<005 ¢ ><01 ‘ns’<1

Model with constant shape:
Estimate SE z-value Pr(Z>|zl|)
log(theta) 0.90479 0.06814 13.28  <2e-16 **x

Signif. codes: 0 ‘¥*x’ <0001 ‘**’ <0.01 ‘x><005 ¢ > <01 ‘ns’<1

Residual degrees of freedom: 144

Log-likelihood: 527.8803

Number of iterations: 79 .

For the case with all covariates, the value B, indicates the rate of recoveries when all covariates were null. The estimate for the
parameter fB; reports that hospital beds have a positive effect on the rate of recoveries, that is, in US states with a large number of
hospital beds, the rate of recoveries is higher. In contrast, the estimates for the parameters 1, B, and B4 have a negative effect on the
rate of recoveries, indicating that this rate is less for US states with higher population density, Gini index and poverty rate. Likewise, 5
and fBg are negative, with Bg being less than Bs, which indicates that the time after the 10th confirmed case is detrimental to the rate of
recovery.

38



J. Mazucheli, B. Alves, A.EB. Menezes et al.
6. Concluding remarks

The quantile regression methodology provides a framework
for modeling the relationship between an outcome or response
variable and explanatory variables or covariates using conditional
quantile functions. This methodology not only offers a more ro-
bust alternative to estimate the central tendency of the response
but also allows a more detailed exploration of its conditional dis-
tribution for different quantiles. Applications of quantile regression
arose in many research areas, ranging from ecology over genetics
to economics [13], but only in the last decade have been works
that investigate a parametric approach.

This paper presented a new computational package imple-
mented in the R software, two biomedical applications, one of
them with COVID-19 data, and an up-to-date review of the
parametric quantile regression models obtained re-parameterizing
a distribution in terms of a quantile. We described the main
characteristics of several distributions used to model continu-
ous variables bounded to the unit interval (based on the ex-
ponentiated arcsech-normal, generalized half-normal, generalized
Johnson SB, Johnson-Student-t, Lambert-uniform, log-extended
exponential-geometric, power Johnson SB, Kumaraswamy, L-
logistic, transmuted unit-Rayleigh, unit-Birnbaum-Saunders, unit-
Bur-XII, unit-Chen, unit-Gompertz, unit-half-normal, unit-Weibull,
and Vasicek distributions), four for non-negative continuous re-
sponses (based on the Birnbaum-Saunders, flexible Weibull, logis-
tic Nadarajah-Haghighi, and log-symmetric families), and one for
discrete responses (based on the discrete generalized half-normal
distribution).

For the distributions on the unit interval that are more flexible
in terms of the behavior of its probability density function, an R
package is available, mainly for parameter estimation and model
checking. We showed how to apply the methods and functions
contained in the package through two applications in biomedi-
cal data. Future versions of the package will focus on extending
the support interval to include zero-inflation, one-inflation or zero-
one-inflation quantile regression. Please note that that the com-
putational implementation of zero-or-one augmented is straight-
forward since the likelihood function factorizes in two terms: one
depending on the discrete component and another one depend-
ing on continuous component. Thus, in the R software, one can
use the stats::glm() function to estimate the discrete com-
ponent and the uniquantreg::uniquantreg() function to
estimate the continuous component. In the next version of the
uniquantreg package, we are planning to add a wrapper func-
tion to estimate and infer in augmented unit quantile regression
models.
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Appendix: Comparison with non-parametric quantile
regressions

Although outside the scope of this paper, in this appendix,
we present the parameter estimates, for both data sets consid-
ered in the applications (Brazilian and COVID-19 data sets), con-
sidering the standard quantile regression model introduced in [57].
These estimates are obtained using the rq function available in
the quantreg package of R. Once the response variable is on the
(0,1) interval, the fit is carried out considering its logit transfor-
mation; see, for example, [14,127]. Table A.7 reports the parameter
estimates considering the Brazilian body fat data set. For the data
set related to COVID-19, estimates are in Table A.8. From these re-
sults, in general, no major differences are observed between the
estimates obtained by the parametric and non-parametric method-
ologies. Note that the coefficients of determination R? for the
standard quantile regression model introduced in [56] were of

Table A1l
Parameter estimates for Brazilian body fat data set.
Coefficients

Distribution Intercept age bmi sexmale ipaginsufficiently active ipaqactive
ashw -0.476 0.005 0.082 -0.898 -0.125 -0.332
johnsonsb -0.470 0.005 0.092 -0.938 -0.117 -0.263
kum -0.530 0.004 0.082 -0.820 -0.076 -0.216
leeg -0.450 0.005 0.093 -0.957 -0.131 -0.257
ubs -0.485 0.004 0.086 -0.895 -0.115 -0.242
uburrxii -0.506 0.004 0.053 -0.565 -0.083 -0.160
uchen -0.283 0.007 0.114 -1.138 -0.138 -0.387
ughne -0.481 0.005 0.072 -0.833 -0.135 -0.382
ughnx -0.504 0.004 0.080 -0.799 -0.098 -0.227
ugompertz -0.362 0.006 0.104 -1.057 -0.148 -0.385
ugumbel -0.438 0.006 0.092 -0.970 -0.130 -0.354
ulogistic -0.475 0.005 0.089 -0.932 -0.122 -0.239
uweibull -0.494 0.005 0.077 -0.863 -0.121 -0.320
non-parametric -0.469 0.005 0.083 -0.950 -0.153 -0.220
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Table A2
Parameter estimates for COVID-19 data set.
CoefTicients

Distribution Intercept PD GINI BEDS SR PR LE T90 T180
ashw 12.640 -0.002 -15.385 0.195 -7.259 0.597 0.016 -1.907 -2.571
johnsonsb -2.609 -0.002 -17.179 0.040 2.229 6.124 0.199 -2.000 -2.833
kum -6.101 -0.002 -19.044 -0.182 7.253 11.745 0.234 -1.845 -2.275
leeg -3.900 -0.002 -19.499 -0.074 5.816 8.403 0.219 -2.285 -2.724
ubs -7.154 -0.002 -17.267 0.056 0.563 9.176 0.256 -2.019 -2.891
uburrxii 12.591 -0.002 -15.207 0.196 -7.288 0.569 0.016 -1.899 -2.563
uchen 12.525 -0.002 -15.281 0.194 -7.202 0.584 0.017 -1.902 -2.566
ughne 17.455 -0.002 -14.542 0.251 -10.927 -1.044 -0.042 -1.840 -2.456
ughnx -28.798 -0.002 -23.392 -0.222 8.718 25.610 0.533 -2.190 -3.208
ugompertz 9.963 -0.002 -19.182 0.118 -3.551 0.283 0.070 -2.235 -2.827
ugumbel 12.535 -0.002 -15.336 0.194 -7.167 0.538 0.017 -1.909 -2.573
ulogistic 0.468 -0.002 -16.621 0.042 2.344 5.274 0.157 -2.032 -2.825
uweibull 12.563 -0.002 -15.246 0.195 -7.245 0.580 0.017 -1.899 -2.564
non-parametric 13.171 -0.002 -14.829 0.154 -3.711 3.527 -0.001 -2.229 -2.859

78.8% and 81.3%, respectively, when employing the Brazilian and
COVID-19 data sets, respectively, which are slightly greater than
the corresponding maximal values of the parametric quantile re-
gressions, that is, 77.7% (unit-logistic model) and 77.5% (unit-
Birnbaum-Saunders model) for the Brazilian body fat data set; and
80.3% (unit-Gompertz model) and 79.8% (unit-logistic model) for
the COVID-19 data set.
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