
Computer Methods and Programs in Biomedicine 221 (2022) 106816 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

An overview on parametric quantile regression models and their 

computational implementation with applications to biomedical 

problems including COVID-19 data 

Josmar Mazucheli a , Bruna Alves a , André F.B. Menezes a , Víctor Leiva 

b , ∗

a Department of Statistics, Universidade Estadual de Maringá, Brazil 
b School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Chile 

a r t i c l e i n f o 

Article history: 

Received 19 October 2021 

Revised 28 February 2022 

Accepted 13 April 2022 

Keywords: 

GLM 

Likelihood methods 

Parametric regression 

Quantile function 

R software 

a b s t r a c t 

Quantile regression allows us to estimate the relationship between covariates and any quantile of the re- 

sponse variable rather than the mean. Recently, several statistical distributions have been considered for 

quantile modeling. The objective of this study is to provide a new computational package, two biomedical 

applications, one of them with COVID-19 data, and an up-to-date overview of parametric quantile regres- 

sion. A fully parametric quantile regression is formulated by first parameterizing the baseline distribution 

in terms of a quantile. Then, we introduce a regression-based functional form through a link function. 

The density, distribution, and quantile functions, as well as the main properties of each distribution, are 

presented. We consider 18 distributions related to normal and non-normal settings for quantile modeling 

of continuous responses on the unit interval, four distributions for continuous response, and one distri- 

bution for discrete response. We implement an R package that includes estimation and model checking, 

density, distribution, and quantile functions, as well as random number generators, for distributions us- 

ing quantile regression in both location and shape parameters. In summary, a number of studies have re- 

cently appeared applying parametric quantile regression as an alternative to the distribution-free quantile 

regression proposed in the literature. We have reviewed a wide body of parametric quantile regression 

models, developed an R package which allows us, in a simple way, to fit a variety of distributions, and 

applied these models to two examples with biomedical real-world data from Brazil and COVID-19 data 

from US for illustrative purposes. Parametric and non-parametric quantile regressions are compared with 

these two data sets. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The aim of traditional regression is to assess the effect of one or 

ore explanatory variables (hereafter covariates) on the mean of 

he response variable (hereafter response) [109] . The idea of mod- 

ling the conditional mean using covariates is the core of the re- 

ression techniques. Under the assumption of normality and ho- 

oscedasticity of an error term, a traditional regression model is 

ble to provide a parsimonious description of how the mean of 

he response depends on the values of the covariates [54] . In a 

arametric context, the use of traditional regression models is un- 

easible when the underlying probability or statistical distribution 

hereafter distribution) does not have a simple form for its mean, 
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aking it difficult to assess the effects of covariates on the mean 

esponse. 

An attractive alternative beyond mean modeling is the quan- 

ile regression proposed in [58] , where the mean is replaced by a 

efined set of quantiles that provide a better and complete view 

f the underlying relationships between the response and covari- 

tes. There is a lot of literature about quantile regression, which 

as been applied in areas as biology, economy, engineering, and 

edicine. A review of quantile regression has been provided in 

46] for different types of data and application areas. Note that 

here are three approaches to quantile regression: (i) distribution- 

ree [57] , (ii) based on a pseudo-likelihood through the Laplace dis- 

ribution [58] ; and (iii) the parametric modeling using maximum 

ikelihood (ML) methods. The approach mentioned in (i) above 

ay be overly complicated or unnecessary for the relatively simple 

orms of quantile dependence that are often observed in real-world 

ata. Besides the disadvantage of not exploring the parametric sta- 
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istical modeling elements that can be considered, this approach 

an bring problems such as crossing quantile curves [36,98] . 

In the parametric approach indicated in (iii), the central idea is 

o insert a quantile parameter in a baseline distribution so obtain- 

ng a distribution parameterized in terms of a fixed quantile. By 

arameterizing a distribution in terms of its quantile function, one 

ay interpret its location parameter as being a quantile of the dis- 

ribution from which one formulates a regression for a fixed value 

f this. This strategy was adopted, among others, by [92,93] with 

he Kumaraswamy distribution [67] which claims that: 

Employing the median-dispersion re-parameterizations of the Ku- 

araswamy distribution instead of the beta distribution in regression 

odels may be preferable in at least three cases. First, the median of 

he dependent variable may be more interesting or relevant than its 

ean on theoretical grounds. Second, if the conditional distribution of 

he dependent variable is skewed, the median may be a more appro- 

riate measure of central tendency than the mean. Third, by using the 

edian as location parameter, Kumaraswamy regressions are likely to 

e much more robust to outliers than beta regressions . 

It should be worth mentioning that, instead of “median- 

ispersion re-parameterizations”, we can consider “quantile re- 

arameterizations” for any distribution with a closed-form expres- 

ion for the quantile function. In recent years, in addition to the 

umaraswamy distribution, several distributions have been used 

n their “quantile re-parameterization” forms. The veracity of this 

tatement can be confirmed by many recently published works on 

his subject presented through the present paper. 

Therefore, following the proposal considered in [58] , the main 

bjectives of our study are to provide a new computational pack- 

ge implemented in the R software, two biomedical applications, 

ne of them with COVID-19 data, and an up-to-date review of the 

arametric quantile regression models obtained re-parameterizing 

 distribution in terms of a quantile. We expect this study to be a 

eference source, and to encourage the use of parametric quantile 

egression. Although we employ distributions with support on the 

nit interval, the quantile family of two-parameter distributions 

escribed in [118] and recently elaborated by [117] will not be con- 

idered in this survey. Also, the semiparametric quantile regression 

odels using the quantile-based asymmetric densities family, in- 

roduced in [36] , will also not be considered, but some comparison 

ith semiparametric quantile structures are provided. 

This paper is organized as follows. Section 2 identifies the dis- 

ributions used in the analysis of Gaussian-related bounded re- 

ponses on the unit interval, whereas Section 3 provides similarly 

he case of non-Gaussian-related bounded responses on this inter- 

al. In Section 4 , we introduce distributions for continuous positive 

esponses and the case of a discrete response. In Section 5 , the 

egression formulation is presented as well as the ML estimation 

ethod while introducing an R package named unitquatreg , 
losing this section with two applications based on real-world 

iomedical data sets from Brazil and United States (US), includ- 

ng COVID-19 data, as illustration. Some concluding remarks are 

tated in Section 6 . Parametric and non-parametric quantile regres- 

ion models are compared with these two data sets and reported 

n an appendix. 

. Parametric quantile regressions for Gaussian-related 

ounded responses 

In this section, in alphabetic order, we present the distributions 

tilized as baseline in quantile regression modeling of responses 

n the intervals (0,1) and [0,1] generated from Gaussian or nor- 

al distributions. The regression model is developed by first re- 

arameterizing, in terms of the 100 τ th quantile, with 0 < τ < 1 ,

ne parameter of a baseline distribution and then introducing a 

egression-based functional form through an appropriate link func- 
2 
ion. We investigate the relevant properties of the following dis- 

ributions: exponentiated arcsech-normal hyperbolic [62] , Johnson 

B [18,120] , unit-Birnbaum-Saunders [77,81,82] , unit-half-normal 

5,60] , and Vasicek [75,80] . The main probabilistic features, such 

s probability density function (PDF), cumulative distribution func- 

ion (CDF) and quantile function (QF) are introduced. Furthermore, 

or illustrative purposes and detecting its distributional shapes, we 

how the plots of the quantile re-parameterized PDFs. 

.1. The exponentiated arcsech-normal hyperbolic distribution 

The exponentiated arcsech-normal hyperbolic model [62] is ob- 

ained from the transformation F (y ;α, θ ) = G (y ;α, 0) θ , where G

enotes here the arcsech-normal hyperbolic CDF. The correspond- 

ng PDF, CDF and QF of Y are written, respectively, as 

f ( y ; α, θ ) = 

2 θ

α y 
√ 

1 − y 2 
φ
[ 

1 

α
arcsech ( y ) 

] 
×
{ 

2 − 2 �
[ 

1 

α
arcsech ( y ) 

] } θ − 1 

, (2.1) 

 (y ; α, θ ) = 

{ 
2 − 2�

[ 
1 

α
arcsech (y) 

] } θ
, 

Q(τ ;α, θ ) = sech 

[
α�−1 

(
1 − τ 1 /θ

2 

)]
, (2.2) 

here 0 < y < 1 and α, θ > 0 , with �−1 denoting the QF

f the standard normal distribution corresponding to the inverse 

unction of �, that is, the standard normal CDF obtained from the 

tandard normal PDF, φ namely. In addition, arcsech (y ) = log [1 + 

1 − y 2 ) 1 / 2 ) /y ] and sech (y ) = 2 / [ exp (y ) + exp (−y )] . When y

ends to zero, since arcsech( y ) ∼ log (y ) → ∞ and then the expo-

ential term appears in f (y ;α, θ ) , we have f (y ; α, θ ) → 0 . When

 tends to one, since arcsech(1) = 0 , we have f (y ; α, θ ) → ∞ .

rom the expression defined in (2.2) , the parameter α can be re- 

arameterized as α = h −1 (μ) = arcsech (μ) / �−1 [(2 − τ 1 /θ ) / 2] , 

uch that μ is, for a fixed and known value τ , the 100 τ th quantile

f the distribution of Y . Fig. 1 shows some possible shapes of the 

e-parameterized exponentiated arcsech-normal hyperbolic PDF for 

elected values of μ, θ and τ . Possible shapes of this distribution 

re slanted as well as U and N shaped and increasing shapes. In 

62] , the exponentiated arcsech-normal hyperbolic model was ap- 

lied to data that verified the relationship between reading ac- 

uracy with dyslexia and intelligence quotient. The model was 

ompared with a quantile unit-Weibull regression, indicating that 

he exponentiated arcsech-normal hyperbolic regression has better 

odeling capabilities for this application. 

.2. The Johnson SB distribution 

The Johnson SB model [18] is obtained from the transformation 

 = { 1 + exp [ −(X − α) /θ ] } −1 , where X ∼ N(0 , 1) , which denotes a

tandard normal distributed random variable. The corresponding 

DF, CDF and QF of Y are stated, respectively, as 

f ( y ; α, θ ) = 

θ√ 

2 π

1 

y ( 1 − y ) 

× exp 

{
−1 

2 

[ 
α + θ l og 

(
y 

1 − y 

)] 2 }
, (2.3) 

F ( y ;α, θ ) = �
[
α + θ log 

(
y 

1 − y 

)]
, 

 ( τ ;α, θ ) = 

exp 

⎡ ⎣ �−1 ( τ ) − α

θ

⎤ ⎦ 
1 + exp 

⎡ ⎣ �−1 ( τ ) − α

θ

⎤ ⎦ , 
(2.4) 
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Fig. 1. Plots of the re-parameterized PDF stated from (2.1) for indicated values of μ, θ and τ . 
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here 0 < y < 1 , α ∈ R and θ > 0 . For quantile regression,

ote that α presented in the expression defined in (2.4) must be 

eparametrized as α = h −1 (μ) = �−1 (τ ) − θ log [ μ/ (1 − μ)] , 

here μ is, for a fixed and known value τ , the 100 τ th quantile 

f the distribution of Y . Fig. 2 shows some possible shapes of the

e-parameterized Johnson SB PDF for selected values of μ, θ and 

. 

A quantile regression model considering the Johnson SB dis- 

ribution has not been considered in the literature. However, 

ree quantile regression models have been proposed stating 

ome transformations from a Johnson SB distributed random 

ariable. The first model was presented with basis on the sym- 

etric family of distributions [72,114] . This family is also called 

eneralized Johnson SB distribution and is obtained by replacing 

 ∼ N (0 , 1) by X ∼ S (0 , 1 ; f g ) where X ∼ S (0 , 1 ; f g ) means

hat the random variable X follows the standardized form of 

he symmetric family of distributions for some PDF generat- 

ng function f g . The corresponding PDF, CDF and QF of Y = 

f ( y ; α, θ, δ) =
3 
 1 + exp [ −(X − α) /θ ] } −1 
, where X ∼ N ( 0 , 1 ) , are formulated, 

espectively, as 

f ( y ; α, θ ) = 

θ f g 
{

[ α + θ t ( y ) ] 
2 
}

y ( 1 − y ) 
, (2.5) 

F ( y ; α, θ ) = 

∫ α + θ t ( y ) 
−∞ 

f g 
(
u 

2 
)

d u, 

 ( τ ; α, θ ) = 

[
1 + exp 

(
− ( x τ − α) 

θ

)]−1 
, 

(2.6) 

here 0 < y < 1 , α > 0 , θ ∈ R , t(y ) = log [ y/ (1 − y ) ] , and x τ is

he 100 τ th quantile of X ∼ S (0 , 1 ; f g ) . 

The second model was introduced in [18] considering the 

ower Johnson SB distribution, that is obtained from the Johnson 

B distribution and the composition of a baseline standard power 

ormal distribution [41] and the QF of the logistic distribution. The 

orresponding PDF, CDF and QF of Y are defined, respectively, as 

φ
[
α + θ l og 

(
y 

1 − y 

)]{
�
[
α + θ log 

(
y 

1 − y 

)]}δ − 1 

y ( 1 − y ) 
, (2.7) 

F ( y ; α, θ, δ) = 

{ 
�
[ 
α + θ l og 

(
y 

1 − y 

)] } δ
, 

 ( τ ; α, θ, δ) = H 

(
x τ ( δ) − α

θ

)
, (2.8) 
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Fig. 2. Plots of the re-parameterized PDF stated from (2.3) for indicated values of μ, θ and τ . 
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here 0 < y < 1 , α > 0 , θ > 0 and δ ∈ R , H(z) = 1 / [1 +
xp (−z)] , with x τ (δ) being the 100 τ th quantile of the power nor-

al distribution. When δ = 1 , the power Johnson SB distribution 

educes to the Johnson SB distribution. The lack of a simple for- 

ula for the mean of the power Johnson SB distribution inhibits 

he construction of a regression model, but its median has a sim- 

le form. From the expression defined in (2.8) , the parameter α
an be expressed as α = h −1 (μ) = x τ (δ) − θ H 

−1 (μ) , such

hat μ is, for a fixed and known value τ , the 100 τ th quantile of

he distribution of Y . 

The third model considers the Johnson-t distribution. This dis- 

ribution is obtained by replacing X ∼ N(0 , 1) by X ∼ t(v ) when

enerating the Johnson SB distribution, where X ∼ t(v ) means that 

he random variable X follows the Student-t distribution with v > 

 degrees of freedom. Then, by the transformation 

 = 

{ 
1 + exp 

[ 
−
(

X − α

θ

)] } −1 

, 

e obtain that Y follows a Johnson-t distribution. The correspond- 

ng PDF, CDF and QF of Y are established, respectively, as 

f ( y ; α, θ ) = 

θ v v 2 B 

(
1 
2 
, v 

2 

)−1 

y ( 1 − y ) 

{
v + [ α + θ l ( y ) ] 

2 
} −v −1 

2 
, (2.9) 

F ( y ; α, θ ) = 

1 

2 

{ 
1 + sign [ α + θ l ( y ) ] 

[ 
1 − I m ( α+ θh ( y ) ) 

( v 
2 

, 
1 

2 

)] } 
, 

 ( τ ; α, θ ) = 

[ 
1 + exp 

(
− ( Q x ( τ ) − α) 

θ

)] −1 

, (2.10) 
4 
here 0 < y < 1 , v represents the degrees of freedom, α ∈ R

s the location parameter, and θ > 0 is the dispersion parameter, 

ith Q x (τ ) being the 100 τ th quantile of the Student-t distribu- 

ion. Also, note that l(y ) = log [ y/ (1 − y )] , m (z) = z/ (v + z 2 ) , and

 y (a, b) = B (y ; a, b) / B (a, b) is the regularized incomplete beta func- 

ion, with B (a, b) and B (y ; a, b) being the incomplete and complete

eta functions, respectively. From the expression defined in (2.10) , 

he parameter α can be re-parameterized as α = h −1 (μ) = 

log [(1 − μ) / μ] θ − Q x (τ ) , such that μ is, for a fixed and

nown value τ , the 100 τ th quantile of the distribution of Y . Moti-

ated by the presence of zeros or ones, a new class of zero-or-one 

nflated distributions was introduced using a mixture of two mod- 

ls: a generalized Johnson SB distribution and a degenerate distri- 

ution at a known value c, where c = 0 or c = 1 , depending on the

ase. Thus, the PDF takes the form stated as k (y ; ν, μ, θ , τ ) =
, if y = c or k (y ; ν, μ, θ, τ ) = (1 − ν) f (y ; μ, θ, τ ) , if

 ∈ (0 , 1) , where f is the re-parameterized generalized Johnson 

B PDF. 

.3. The unit-Birnbaum-Saunders distribution 

The Birnbaum-Saunders distribution [77,76,81] is often consid- 

red as a life distribution due to its origins in fatigue of materials. 

ence, this distribution assumes a prominent role in the areas of 

eliability and survival analysis, being a good alternative to tradi- 

ional distributions. In addition, the Birnbaum-Saunders distribu- 

ion has been considered as a model for tumor growth [68] among 
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Fig. 3. Plots of the re-parameterized PDF stated from (2.11) for indicated values of μ, θ and τ . 
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ther biomedical applications. The unit-Birnbaum-Saunders model 

82] is obtained from the transformation Y = exp (−X ) , where X ∼
S (α, θ ) , which denotes a Birnbaum-Saunders distributed random 

ariable [69] . The PDF, CDF and QF of X are written, respectively, 

s 

f ( y ; α, θ ) = 

1 

2 yαθ
√ 

2 π

{ [
− α

log ( y ) 

]1 / 2 

+ 

(
− α

log ( y ) 

)3 / 2 
} 

exp 

{
1 

2 θ2 

[
2 + 

log ( y ) 

α
+ 

α

log ( y ) 

]}
, (2.11) 

F (y ;α, θ ) = 1 − �

( 

1 

θ

{ [
− log (y ) 

α

] 1 
2 

−
[ 
− α

log (y ) 

] 1 
2 

} ) 

, 

(τ ;α, θ ) = exp 

{ 

− 2 α

2 + [ θ�−1 ( 1 − τ ) ] 
2 − θ�−1 ( 1 − τ ) 

√ 

4 + [ θ

here 0 < y < 1 , θ > 0 and α > 0 . 

Note that δ = exp (−α) is the median of the distribution of Y , 

ince F (δ;α, θ ) = 0 . 5 and the rth moment, for r ∈ { 1 , 2 , . . . } , of Y 

s given by 

 ( Y r ) = 

(
1 + 2 r α θ2 + 

√ 

1 + 2 r α θ2 

2 
(
1 + 2 r α θ2 

) exp 

(
1 − √ 

1 + 2 r α θ2 

θ2 

)
. 
5 
 

1 − τ ) ] 
2 

} 

, (2.12) 

Observe that α nor θ have a direct interpretation in terms 

f the observed data. For example, α is no longer the median 

s in the distribution of X . However, from the expression de- 

ned in (2.12) , the parameter α can be re-parameterized as α = 

 

−1 (μ) = log (μ) l(θ, τ ) , where 

 ( θ, τ ) = −1 

2 

{ 
2 + 

[
θ �−1 ( 1 − τ ) 

]2 

− θ �−1 ( 1 − τ ) 
√ 

4 + θ �−1 ( 1 − τ ) 

} 
, 

uch that μ is, for a fixed and known value τ , the 100 τ th quantile

f the distribution of Y . 

Plots of the PDF for the re-parameterized unit-Birnbaum- 

aunders distribution using several values μ, θ and τ are given in 

ig. 3 . Note that increasing values of θ also increases the negative 

symmetry. As μ increases, the variance decreases and the curves 

end to become unimodal for all values of τ . In addition, observe 

hat, when varying τ , the PDF takes different shapes. 
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Fig. 4. Plots of the re-parameterized PDF stated from (2.15) for indicated values of μ, θ and τ . 
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Two examples with real data were provided in [77] related to 

olitical sciences and sports medicine. For comparison purposes, in 

ddition to the unit-Birnbaum-Saunders quantile regression model, 

he Kumaraswamy, L-logistic, log-extended exponential-geometric, 

nit-Burr-XII, unit-Chen, unit-half-normal, and unit-Weibull quan- 

ile regression models were also considered. Both of these exam- 

les reported a performance superior to all of the competing mod- 

ls, giving evidence that the unit-Birnbaum-Saunders distribution 

s an excellent alternative for quantile modeling and for dealing 

ith bounded data into the unit interval. For parameter estima- 

ion, model selection and diagnostics based on the unit-Birnbaum- 

aunders distribution, the codes are available at https://github. 

om/AndrMenezes/unitBSQuantReg and by the unitBSQuantReg 
ackage of R [81] . 

.4. The unit-half-normal distribution 

The unit-half-normal model [5] is obtained from the transfor- 

ation Y = X/ ( 1 + X ) , where X ∼ HN (α) , which denotes a half-

ormal distributed random variable [26] . The corresponding PDF, 

DF and QF of Y are formulated, respectively, as 

f (y ;α) = 

2 

α( 1 − y ) 
2 
φ

(
y 

α( 1 − y ) 

)
, (2.13) 

F (y ;α) = 2�

(
y 

α( 1 − y ) 

)
− 1 , 
6 
(τ ;α) = 

α�−1 
(

τ+1 
2 

)
1 + α�−1 

(
τ+1 

2 

) , (2.14) 

here 0 < y < 1 and α > 0 . The rth moment of Y is given by 

 ( Y r ) = αr E 

(
X 

1 + αX 

)
, r ∈ { 1 , 2 , . . . } . 

From the expression defined in (2.14) , the parameter α can be 

e-parameterized as 

= h 

−1 ( μ) = 

μ

( 1 − μ) �−1 ( [ τ + 1 ] / 2 ) 
, 

uch that μ is, for a fixed and known value τ , the 100 τ th quan-

ile of the distribution of Y . In [5] , the unit-half-normal distribu- 

ion outperformed the fit obtained by the unit-logistic, unit-Lindley 

76] , Kumaraswamy and beta distributions considering image data. 

An extension of the unit-half-normal distribution may be ob- 

ained taking the generalized half-normal distribution as baseline 

21] . Considering the transformation Y = X/ ( 1 + X ) , where now 

 ∼ GHN (α, θ ) denotes a generalized half-normal distributed ran- 

om variable with CDF given by F X (x ;α, θ ) = 2�[ −(x/α) θ ] − 1 , the

DF, CDF and QF of Y are presented, respectively, as 

f (y ;α, θ ) = 

√ 

2 

π

θ

y ( 1 − y ) 

[
y 

α( 1 − y ) 

]θ

exp 

( 

− 1 

2 

[
y 

α( 1 − y ) 

]2 θ
) 

, 

(2.15) 

https://github.com/AndrMenezes/unitBSQuantReg
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Fig. 5. Plots of the re-parameterized PDF stated from (2.17) for indicated values of μ, θ and τ . 

Q

t

α

s  

o  

d

t  

a

r

Q

w  

t

−
v

p

e  

t  

n

m

t

i

u

2

t

o

V

a

 

F ( y ;α, θ ) = 2�

[ (
y 

α( 1 − y ) 

)θ
] 

− 1 , 

 ( τ ;α, θ ) = 

α
[
�−1 

(
τ+1 

2 

)] 1 
θ

1 + α
[
�−1 

(
τ+1 

2 

)] 1 
θ

, 0 < y < 1 . (2.16) 

To evaluate the effect of covariates on the quantile of the dis- 

ribution, the parameter α can be expressed as 

= h 

−1 ( μ) = 

μ

( 1 − μ) [ �−1 ( [ τ + 1 ] / 2 ) ] 
1 
θ

, 

uch that μ is, for a fixed and known value τ , the 100 τ th quantile

f the distribution of Y . For θ = 1 , we have the unit-half-normal

istribution considered in [5] . In addition, from the transforma- 

ion Y = exp (−X ) , where X ∼ GHN (α, θ ) , we have another gener-

lized unit-half-normal distribution with PDF, CDF and QF written, 

espectively, as 

f (y ;α, θ ) = 

√ 

2 

π

θ

y [ − log ( y ) ] 

[
− log ( y ) 

α

]θ

exp 

( 

− 1 

2 

[
− log ( y ) 

α

]2 θ
) 

, 

(2.17) 

F (y ;α, θ ) = 2�

{ 

−
[
− log ( y ) 

α

]θ
} 

, 

(τ ;α, θ ) = exp 

{
−α

[ 
−�−1 

(
τ

2 

)] 1 
θ

}
, (2.18) 
7 
here 0 < y < 1 . From the expression defined in (2.18) ,

he parameter α can be re-parameterized as α = h −1 (μ) = 

log (μ) [�−1 (τ / 2)] 
−1 /θ

, such that μ is, for a fixed and known 

alue τ , the 100 τ th quantile of the distribution of Y . 

Plots of the PDFs stated in (2.15) and (2.17) for the re- 

arameterized generalized unit-half-normal distribution, with sev- 

ral values of μ, θ and τ , are given in Figs. 5 and 4 , respectively. In

he second column of Fig. 5 , we see the behavior of the unit-half-

ormal distribution, whose PDF shapes are unimodal and asym- 

etrical (skewed to the left and to the right). These shapes make 

he unit-half-normal distribution flexible to model proportion data 

n many applied sciences. Note that these two extensions of the 

nit-half-normal have not been considered in the literature. 

.5. The Vasicek distribution 

The Vasicek distribution was proposed in [123] and used, for 

he first time, in [80] to model the mean and quantiles conditional 

n covariates. A random variable Y with bounded support (0,1) is 

asicek distributed if its PDF, CDF, and QF are written, respectively, 

s 

f (y ;α, θ ) = 

√ 

1 − θ

θ

exp 

{ 

1 

2 

[ 

�−1 ( y ) 2 −
(

�−1 ( y ) 
√ 

1 − θ − �−1 ( α) √ 

θ

)2 
] } 

, 

(2.19)
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Fig. 6. Plots of the re-parameterized PDF stated from (2.19) for indicated values of μ, θ and τ . 
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[

[

F (y ;α, θ ) = �

(
�−1 ( y ) 

√ 

1 − θ − �−1 ( α) √ 

θ

)
, 

(τ ;α, θ ) = �

(
�−1 ( α) + �−1 ( τ ) 

√ 

θ√ 

1 − θ

)
, (2.20) 

here y > 0 and α, θ < 1 . Note that θ is a shape parameter

nd the mean and variance of Y are, respectively, given by 

(Y ) = α, Var (Y ) = �2 

(
�−1 (α) , �−1 (α) , θ

)
− α2 , 

here 

2 (a, b, c) = 

1 

2 π
√ 

1 − c 2 

∫ a 

−∞ 

∫ b 

−∞ 

exp 

(
−x 2 − 2 cxy + y 2 

2(1 − c 2 ) 

)
d y d x. 

As stated in [123] , the PDF defined in (2 . 19) is unimodal

ith mode at �[�−1 (α)(1 − θ ) 1 / 2 / (1 − 2 θ )] , when θ < 0 . 5 ;

onotone when θ = 0 . 5 ; and U-shaped when θ > 0 . 5 . Note

hat we can easily assess the effect of covariates on the mean 

f the distribution of Y through some appropriate link func- 

ion for α. Moreover, from the expression defined in (2.20) , we 

ay re-parameterize α in terms of the 100 τ th quantile, τ ∈ 

0 , 1) namely, using the expression α = h −1 (μ) = �[�−1 (μ)(1 −
) 1 / 2 − �−1 (τ ) θ1 / 2 ] , where μ is, for a fixed value of τ , the 100 τ th

uantile of the distribution of Y Fig. 6 shows some possible shapes 

f the re-parameterized PDF stated in (2.19) for selected values of 

, θ and τ . 
8 
To the best of our knowledge, the Vasicek distribution was used 

or the first time in [80] to estimate quantiles and means con- 

itional on covariates. In that work, the authors presented appli- 

ations to medical and political data. In the first application, the 

asicek quantile regression model outperformed the models based 

n the Johnson SB, Kumaraswamy, unit-logistic, and unit-Weibull 

istributions. In the second one, the Vasicek mean regression out- 

erformed the fits obtained by beta [32] and simplex [119] regres- 

ions. Parameter estimation, model selection and diagnostics are 

vailable on the vasicekreg R package [75] . Notice that the lit- 

rature on the Vasicek distribution is rather scarce and it is typi- 

ally used to model economic data. 

. Parametric quantile regressions for non-Gaussian-related 

ounded responses 

In this section, by using a similar presentation structure to 

ection 2 , we introduce parametric quantile regression mod- 

ls for non-Gaussian-related bounded responses based on the 

rcsecant hyperbolic Weibull [64] , Kumaraswamy [92] , Lambert- 

niform [49] , L-logistic [99] , log-extended exponential-geometric 

52] , transmuted unit-Rayleigh [63] , unit-Bur-XII [61] , unit-Chen 

59] , unit-Gompertz [79] , unit-Gumbel [78] , and unit-Weibull 

85] distributions. 
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Fig. 7. Plots of the re-parameterized PDF stated from (3.21) for indicated values of μ, θ and τ . 
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.1. The arcsecant hyperbolic Weibull distribution 

The arcsecant hyperbolic Weibull model [64] is obtained from 

 = sech (X) , where X ∼ Weibull (α, θ ) , which denotes a Weibull 

istributed random variable with CDF given by F X (x ;α, θ ) = 

xp (−αx θ ) [126] . The corresponding PDF, CDF and QF of Y are 

ritten, respectively, as 

f (y ;α, θ ) = 

αθ

y 
√ 

1 − y 2 
arcsech (y ) θ−1 exp 

[
−α arcsech (y ) θ

]
, 

(3.21) 

F (y ;α, θ ) = exp 

[
−α arcsech (y ) θ

]
, 

(τ ;α, θ ) = sech 

([
−α−1 log (τ ) 

] 1 
θ

)
, (3.22) 

here 0 < y < 1 and arcsech (y ) = log [(1 + (1 − y 2 ) 1 / 2 ) /y ] . Note

hat α > 0 is the rate parameter, while θ > 0 is the shape pa-

ameter and does not has a direct interpretation in terms of the 

bserved data. 

For quantile regression, the parameter α presented in (3.22) can 

e re-parameterized as α = h −1 (μ) = − log (τ ) / arcsech (μ) θ , 

uch that μ is, for a fixed and known value τ , the 100 τ th quan-

ile of the distribution of Y . Plots of the re-parameterized arcsecant 

yperbolic Weibull distribution PDF for several values μ, θ and τ
re given in Fig. 7 . 
9

.2. The Kumaraswamy distribution 

The Kumaraswamy model with support in the interval (a, b) 

as proposed in [67] . The particular case for the interval (0,1) 

an be obtained from the transformation Y = exp (−X ) , where 

 ∼ EE (α, θ ) , which denotes an exponentiated-exponential dis- 

ributed random variable [42] with CDF given by F X (x ;α, θ ) = [1 −
xp (−θx )] α . Considering the interval (0,1), the corresponding PDF, 

DF and QF of Y are expressed, respectively, as 

f (y ;α, θ ) = αθy θ−1 (1 − y θ ) α−1 , (3.23) 

F (y ;α, θ ) = 1 − (1 − y θ ) α, 

(τ ;α, θ ) = 

[ 
1 − ( 1 − τ ) 

1 
α

] 1 
θ

, (3.24) 

here 0 < y < 1 and α, θ > 0 are shape parameters. 

The mean and variance of Y are, respectively, given by 

E(Y ) = αB 

(
1 + 

1 

θ
, α
)
, 

ar (Y ) = αB 

(
1 + 

2 

θ
, α
)

−
[ 
−αB 

(
1 + 

1 

θ
, α
)] 2 

, 

here, as mentioned, B (a, b) is the beta function. 

The available formula for E(Y ) makes a mean-based re- 

arameterization unfeasible and then α nor θ have a direct in- 

erpretation in terms of the observed data. For example, θ is no 
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Fig. 8. Plots of the re-parameterized PDF stated from (3.23) for indicated values of μ, θ and τ . 
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onger a rate parameter as in the distribution of X . In contrast, α
nd θ can be re-parameterized according to a quantile. Note from 

92] that a re-parameterization in α is more advantageous. Thus, 

rom the expression defined in (3.24) , the parameter α may be ex- 

ressed as α = h −1 (μ) = log (1 − τ ) / log (1 − μθ ) , such that μ
s, for a fixed and known value τ , the 100 τ th quantile of the

istribution of Y . Fig. 8 shows some possible shapes of the re- 

arameterized Kumaraswamy PDF for selected values of μ, θ and 

. The figure illustrates well how flexible and versatile the Ku- 

araswamy distribution is. 

In [92] , a Kumaraswamy regression model was proposed con- 

idering only the median, but the model can be extended to other 

uantiles. The authors did not consider applications for the pro- 

osed model, but several applications may be found in the liter- 

ture for comparative purposes. For example, in [77] , this model 

as applied for two data sets related to political science and sports 

edicine. In [85] , this model was applied to three data sets: the 

rst one related to the stem cell recovery rate; the second one 

as on the access of families to piped water supply in Brazil- 

an cities in the Southeast and Northeast regions; and the third 

ne on the cost effectiveness of risk management. In [63] , the 

ducational level of countries of the Organization for Economic 

o-operation and Development (OECD) is studied [28] . The trans- 

uted Kumaraswamy distribution was proposed in [55] . A new 

uantile parametric mixed regression model for bounded response 

as presented in [10] , whereas in [105] a Kumaraswamy regres- 

ion model was introduced with an Aranda-Ordaz link function. A 
p

10 
ode regression model for this distribution was analyzed in [91] , 

heres in [43] a Kumaraswamy regression to model bounded out- 

ome scores was considered. An extension of the Kumaraswamy 

uantile regression model to couple extremes zero and one was 

resented in [9] . Considering that the continuous part follows a 

e-parameterized Kumaraswamy distribution, the proposed inflated 

odel mixes the continuous and discrete parts. Therefore, their re- 

pective PDF and CDF are given by 

 ( y ;ν, μ, θ, τ ) = 

{ 

ν (1 − c) , if y = 0 ;
ν c, if y = 1 ;
(1 − ν) f (y ;μ, θ, τ ) if y ∈ (0 , 1) ;

(3.25) 

 ( y ;ν, μ, θ, τ ) = ν ( 1 − c ) + ν c I { 1 } ( y ) + ( 1 − ν) F ( y ;μ, θ, τ ) ;
(3.26) 

here 0 < ν < 1 is the mixture parameter, c is the probability of 

 Bernoulli distributed random variable, f is the re-parameterized 

umaraswamy PDF, and I A is the indicator function that equals one 

f y ∈ A and zero otherwise. The proposed model was used in [9] to

nalyze the impacts of several conditioning variables on the pro- 

ortion of people that live in households with inadequate water 

upply and sewage in Brazil. Since nearly 17% of the Brazilian mu- 

icipalities no one lives in households with inadequate water sup- 

ly and sewage, the data display inflation at zero. 
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Fig. 9. Plots of the re-parameterized PDF stated from (3.27) for indicated values of μ and τ . 

Fig. 10. Plots of the re-parameterized PDF stated from (3.30) for indicated values of μ, θ and τ . 
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.3. The Lambert-uniform distribution 

The Lambert-uniform model [49] has one parameter and is 

elpful to describel bounded data from a PDF with a monotonic 

increasing or decreasing) behavior. This distribution arises directly 

rom the Lambert-F generator [48] when considering a uniform 

aseline distribution. The corresponding PDF, CDF and QF of Y are 

stablished, respectively, as 

f (y ;α) = αy [ 1 − log (α)(1 − y ) ] , (3.27) 
11 
F (y ;α) = 1 − ( 1 − y ) αy 

(τ ;α) = 

⎧ ⎨ ⎩ 

1 

log (α) 
W 0 

[
log (α)(τ − 1) 

α

]
+ 1 , if α ∈ (0 , 1) ∪ (1 , e ) ;

τ, if α = 1 ;
(3.28) 

here 0 < y < 1 , e 	 2 . 718 is the Euler number, 0 < α < e is

 shape parameter and W is the principal branch of the Lambert- 
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Fig. 11. Plots of the re-parameterized PDF stated from (3.32) for indicated values of μ, θ and τ . 
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 function [22] . The Lambert-uniform mean is given by 

(Y ) = 

⎧ ⎨ ⎩ 

α − 1 − log (α) 

log (α) 2 
, if α ∈ (0 , 1) ∪ (1 , e ) ;

1 
2 
, if α = 1 . 

(3.29) 

In the formula stated in (3.29) , observe that the mean of the 

ambert-uniform distribution has a closed form. However, despite 

his, the shape parameter α cannot be expressed explicitly as a 

unction of the mean, which is a major drawback to formulate a 

egression model and quantify the effect of the covariates on the 

ean response. Also, α can be explicitly formulated as a function 

f the 100 τ th quantile, which permits us to re-parameterize the 

ambert-uniform distribution in terms of this quantile and, conse- 

uently, to establish a quantile regression in a simple way. 

From the expression defined in (3.28) , note that α may be 

e-parameterized as α = [(1 − τ ) / (1 − μ)] 1 / μ, such that μ is, for 

 fixed value of τ , the 100 τ th quantile of the distribution of 

 . Plots of the re-parameterized Lambert-uniform PDF for sev- 

ral values μ and τ are given in Fig. 9 . A model considering 

he Lambert-uniform distribution was analyzed in [49] outper- 

orming the models considering the Kumaraswamy and arcsecant- 

yperbolic-normal distributions based on data on cost effective- 

ess of risk management. 

.4. The log-extended exponential-geometric distribution 

The log-extended exponential-geometric model [52] is obtained 

rom the transformation Y = exp (−X ) , where X ∼ EEG (α, θ ) , which 
12 
enotes an extended exponential-geometric distributed random 

ariable [1] . The corresponding PDF, CDF and QF of Y are given, 

espectively, as 

f (y ;α, θ ) = 

θ ( 1 + α) y θ−1 (
1 + αy θ

)2 
, (3.30) 

F (y ;α, θ ) = 

( 1 + α) y θ

1 + αy θ
, 

(τ ;α, θ ) = 

(
τ

1 + α − ατ

)
1 
θ , (3.31) 

here 0 < y < 1 , α > 0 and θ > −1 . From the expres-

ion defined in (3.31) , the parameter α can be re-parameterized 

s α = h −1 (μ) = −[(1 − τμ−θ ) / (1 − τ )] , such that μ is, for a fixed

nd known value τ , the 100 τ th quantile of the distribution of 

 . Fig. 10 shows some possible shapes of the re-parameterized 

og-extended exponential-geometric PDF for selected values of μ, 

and τ . This model has as special cases the power function 

nd uniform distributions. In [52] , a log-extended exponential- 

eometric model was proposed and compared with the beta model 

n an application on the cost effectiveness of risk management. 

n this application, the best fit was obtained by the log-extended 

xponential-geometric model. 
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Fig. 12. Plots of the re-parameterized PDF stated from (3.34) for indicated values of μ, θ and τ . 
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.5. The L-logistic distribution 

The L-logistic model [121] is obtained from Y = (1 + 

xp {−[ (X − α) /θ ] } ) −1 , where X ∼ Log ( 0 , 1 ) , which denotes a 

tandard logistic distributed random variable [6] . The corre- 

ponding PDF, CDF and QF of Y are expressed, respectively, as 

f (y ;α, θ ) = 

θ exp (α) 
(

y 
1 −y 

)θ−1 [ 
1 + exp (α) 

(
y 

1 −y 

)θ] 2 , (3.32) 

F (y ;α, θ ) = 

exp (α) 
(

y 
1 −y 

)θ
1 + exp (α) 

(
y 

1 −y 

)θ , 

(τ ;α, θ ) = 

exp 

(
−α

θ

)(
τ

1 −τ

) 1 
θ

1 + exp 

(
−α

θ

)(
τ

1 −τ

) 1 
θ

, (3.33) 

f (y ;α, θ ) = 

2 α log (y ) 

y 
exp

F (y ;α, θ ) = exp 

{
−α[ − lo

Q(τ ;α, θ ) = exp 

{ 

−α− 1 
2 

√

13 
here 0 < y < 1 , α > 0 and θ > 0 . To formulate a quantile

egression, α defined in (3.33) must be re-parameterized as 

= h 

−1 ( μ) = log 

(
τ

1 − τ

)
− θ log 

(
μ

1 − μ

)
, 

uch that μ is, for a fixed and known value τ , the 100 τ th quantile

f the distribution of Y . Plots of the re-parameterized L-logistic PDF 

or several values μ, θ and τ are given in Fig. 11 . A closed form 

as stated in [99] for the moments of the L-logistic distribution, 

hich involves the multivariate Wright generalized hypergeomet- 

ic function. In [99] , a L-logistic quantile regression model was car- 

ied out on the relationship between vulnerability to poverty and 

nxiety. In this study, the beta regression model was also consid- 

red. The regression model considering the L-logistic distribution 

rovided a better fit than the beta regression model for all the cri- 

eria stated [124] . 

.6. The transmuted unit-Rayleigh distribution 

The transmuted unit-Rayleigh model [63] is based on the unit- 

ayleigh distribution proposed in [7] combined with the quadratic 

ransmutation scheme used in [116,15] . The corresponding PDF, 

DF and QF of Y are formulated, respectively, as 

log (y ) 2 
]{

−1 − θ + 2 θ exp 

[
−α log (y ) 2 

]}
, (3.34) 

 ] 
2 
}(

1 + θ − θ exp 

{
−α[ − log (y ) ] 

2 
})

g 

[ 
(1 + θ −

√ 

(1 + θ ) 2 − 4 θτ ) / (2 θ ) 
] } 

, (3.35) 
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Fig. 13. Plots of the re-parameterized PDF stated from (3.36) for indicated values of μ, α and τ . 
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here 0 < y < 1 , α > 0 and θ ∈ [ −1 , 1] is the shape

arameter. From the expression defined in (3.35) , the parame- 

er α can be re-parameterized as α = − log [1 + θ − ((1 + θ ) 2 −
 θτ ) 1 / 2 / (2 θ )] / log (μ) 2 , such that μ is, for a fixed and known

alue τ , the 100 τ th quantile of the distribution of Y . Plots of the

e-parameterized transmuted unit-Rayleigh PDF for several values 

, θ and τ are given in Fig. 12 . Note that these shapes may be 

ecreasing as well as unimodal with various skewed forms. 

An application was considered in [64] to measure the educa- 

ional level of OECD countries related to the covariates as life sat- 

sfaction, homicide rate, and voter turnout. The application indi- 

ated that the transmuted unit-Rayleigh quantile regression model 

rovided a better fit than the beta and Kumaraswamy regression 

odels [27] . 

.7. The unit-Burr-XII distribution 

The unit-Burr-XII model [61] is obtained from the transfor- 

ation Y = exp (−X ) , where X ∼ Burr - XII (α, θ ) , which denotes 

 Burr-XII distributed random variable [16] with CDF given by 

 X (x ;α, θ ) = 1 − ( 1 + x α) 
−θ . The corresponding PDF, CDF and QF of

 are written, respectively, as 

f (y ;α, θ ) = 

αθ

y 
[ − log (y ) ] 

α−1 
{

1 + [ − log (y ) ] 
α
}(−θ−1) 

, (3.36) 

F (y ;α, θ ) = 

{
1 + [ − log (y ) ] 

α
}−θ

, 

(τ ;α, θ ) = exp 

[
−
(
τ− 1 

θ − 1 

) 1 
α

]
, (3.37) 
14 
here 0 < y < 1 and α, θ > 0 are shape parameters. Note 

hat, when y → 0 , f (y ;α, θ ) → + ∞ for all the values of α > 0

nd θ > 0 . When y → 1 , if α > 1 , f (y ;α, θ ) → + ∞ ; if α = 1 ,

f (y ;α, θ ) → θ ; and if α < 1 , f (y ;α, θ ) → 0 . 

As with other distributions mentioned, in this case, α nor θ
ave a direct interpretation in terms of the observed data. How- 

ver, it is possible to re-parameterize both parameters as a func- 

ion of the 100 τ th quantile. In [61] , the parameter α is expressed 

s 

= h 

−1 ( μ) = 

log 
(
τ− 1 

θ − 1 

)
log [ − log ( μ) ] 

. 

As shown in [61] , the conditions τ > 2 θ and μ > exp (−1) , 

ither τ < 2 −θ and μ < exp (−1) , must be satisfied. Therefore, 

or some values of τ , given these parameters combinations, it was 

ot possible to display the shapes of the PDF. We can get more 

exible shapes for the PDF stated in (3.36) re-parameterizing θ as 

= h 

−1 ( μ) = 

log 
(
τ−1 

)
log 

[ 
1 + log 

(
1 
μ

)α] . (3.38) 

Fig. 13 shows some possible shapes of this re-parameterized 

DF for selected values of μ, α and τ . In [108] , it was considered

he transformation Z = 1 − Y and the re-parameterization defined 

n (3.38) , where Y follows the unit-Burr-XII distribution with PDF 

tated in (3.36) . 
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Fig. 14. Plots of the re-parameterized PDF stated from (3.39) for indicated values of μ, θ and τ . 
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.8. The unit-Chen distribution 

The unit-Chen model [59] is obtained from the transforma- 

ion Y = exp (−X ) , where X ∼ Chen (α, θ ) , which denotes a Chen 

istributed random variable [19] with CDF given by F X (x ;α, θ ) = 

 − exp { α[1 − exp (x θ )] } . The PDF, CDF and QF of Y are written, re-

pectively, as 

f (y ;α, θ ) = 

α

y 
θ [ − log (y ) ] 

θ−1 
exp 

{ 
[ − log ( y ) ] 

θ
} 

exp 

[ 
α
(

1 − exp 

{ 
[ − log (y ) ] 

θ
} )] 

, (3.39) 

F (y ;α, θ ) = exp [ α(1 − exp { [ − log (y )] θ } )] , 

 ( τ ;α, θ ) = exp 

( 

−
{

log 

[
1 − log ( τ ) 

α

]} 1 
θ

) 

, (3.40) 

here 0 < y < 1 , and α, θ > 0 are shape parameters. From

he expression defined in (3.40) , the parameter α can be re- 

arameterized as 

= h 

−1 ( μ) = 

log ( τ ) 

1 − exp 

{ 
[ − log ( μ) ] 

θ
} , 

uch that μ is, for a fixed and known value τ , the 100 τ th quan-

ile of the distribution of Y . Plots of the re-parameterized unit- 
15 
hen PDF for several values μ, θ and τ are given in Fig. 14 . This

gure shows that the unit-Chen distribution has left and right 

kewed shapes as well as bathtub shape. In [59] , the importance 

f the unit-Chen model is shown through an application with real- 

orld data on the rate of stem cell recovery and compared with a 

umaraswamy model considering only the median. For this appli- 

ation, the unit-Chen model showed better performance than the 

umaraswamy model. 

.9. The unit-Gompertz distribution 

The unit-Gompertz distribution [83] is obtained from the trans- 

ormation Y = exp (−X ) , where X ∼ GO (α, θ ) , which denotes a 

ompertz distributed random variable with CDF established by 

 X (x ;α, θ ) = 1 − exp { α[1 − exp (θx )] } . The corresponding PDF, CDF

nd QF of Y are stated as 

f (y ;α, θ ) = αθy −( 1+ θ ) exp 

[
α
(
1 − y −θ

)]
, (3.41) 

F (y ;α, θ ) = exp 

[
α
(
1 − y −θ

)]
, 

(τ ;α, θ ) = 

[
1 − log ( τ ) 

α

]− 1 
θ

, (3.42) 
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Fig. 15. Plots of the re-parameterized PDF stated from (3.41) for indicated values of μ, θ and τ . 
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here 0 < y < 1 , α > 0 and θ > 0 . The mean of a unit-

ompertz distributed random variable Y is given as 

(Y ) = α
1 
θ exp (α)


(
θ − 1 

θ
, α

)
, 

here 
(a, b) = 

∫ ∞ 

b t a −1 exp (−t )d t is the upper incomplete 

amma function. To find the variance, consider Var (Y ) = 

 1 
0 [ Q ( τ ;α, θ ) − E(Y ) ] 

2 
d τ , which depends on a term formulated as 

 1 

0 
[ Q ( τ ;α, θ ) ] 

2 
d τ = 2 α

3 
θ exp ( 2 α) 


(
θ − 1 

θ
, α

)



(
θ − 2 

θ
, α

)
. 

Note that α nor θ have a direct interpretation in terms of 

he observed data. For example, θ is no longer a rate parame- 

er as in the distribution of X . However, from the expression de- 

ned in (3.42) , the parameter α can be re-parameterized as α = 

 

−1 (μ) = log (τ ) / (1 − μ−θ ) , such that μ is, for a fixed and known

alue τ , the 100 τ th quantile of the distribution of Y . Similarly, 

e may re-parameterize θ as θ = h −1 (μ) = −[1 / log (μ)] log [1 −
og (τ ) /α] . We can easily verify that, by re-parameterizing α, we 

ave a large number of shapes for the PDF [79] . Fig. 15 shows some

ossible shapes of the re-parameterized unit-Gompertz PDF for se- 

ected values of μ, θ and τ . 

The unit-Gompertz quantile regression was used in [79] to an- 

lyze data of plants where ammonia is oxidized to nitric acid. 
16 
ts fit was compared with the Kumaraswamy, Johnson SB, unit- 

irnbaum-Saunders, unit-logistic, and unit-Weibull distributions. 

arameter estimation, model selection, and diagnostics of these 

odels are available on the ugomquantreg R package [74] . Be- 

ides the unit-Gompertz quantile regression, other works appeared 

n the literature considering the unit-Gompertz model. In [50,51] , 

his model was employed for estimating the reliability of a multi- 

omponent stress-strength system. By using lower record values 

nd inter-record times, inference procedures for estimating the pa- 

ameters and predicting future record values were presented in 

4,66,83] including some interesting properties. 

A characterization of the unit-Gompertz distribution using trun- 

ated moments was introduced in [4] , while a collection of para- 

etric modal regression models was presented in [91] , including 

he unit-Gompertz distribution. Furthermore, a unit-Gompertz dis- 

ribution different from the one proposed in [83] was stated in 

39] . 

.10. The unit-Gumbel distribution 

The unit-Gumbel distribution [78] is obtained from Y = 

xp [( X − α) /θ ] / { 1 + exp [( X − α) /θ ] } , where X ∼ SG (0 , 1) , which 

enotes a standard Type-I Gumbel distributed random variable 

ith CDF given by F = exp [ −x − exp ( −x ) ] [40] . The correspond- 
X 
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Fig. 16. Plots of the re-parameterized PDF stated from (3.43) for indicated values of μ, θ and τ . 
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ng PDF, CDF and QF of Y are written, respectively, as 

f (y ;α, θ ) = 

θ

y (1 − y ) 
exp 

{ 
−α − θ log 

(
y 

1 − y 

)
− exp 

[ 
−α − θ log

F (y ;α, θ ) = exp 

[
−exp ( −α) 

(
1 − y 

y 

)θ
]
, 

(τ ;α, θ ) = 

[
− 1 

log (τ ) 

] 1 
θ

exp 

(
α
θ

)
+ 

[
− 1 

log (τ ) 

] 1 
θ

, (3.44) 

here 0 < y < 1 , while θ > 0 and α ∈ R are shape parameters.

rom the expression defined in (3.44) , the parameter α can be re- 

arameterized as α = h −1 (μ) = θ log [(1 − μ) / μ] + log [ −1 / log (τ )] ,

uch that μ is, for a fixed and known value τ , the 100 τ th quantile

f the distribution of Y . Fig. 16 shows some possible shapes of the

e-parameterized unit-Gumbel PDF for selected values of μ, θ and 

. 

.11. The unit-Weibull distribution 

The unit-Weibull distribution [84,85] is obtained from the 

ransformation Y = exp (−X ) , where X ∼ Weibull (α, θ ) , which de- 

otes a Weibull distributed random variable with CDF given by 
e

17
y 

− y 

)] } 
, (3.43) 

 X (x ;α, θ ) = exp (−αx θ ) [126] . The corresponding PDF, CDF and QF

f Y are written, respectively, as 

f (y ;α, θ ) = 

1 

y 
αθ [ − log (y ) ] 

θ−1 
exp 

{ 
−α[ − log (y ) ] 

θ
} 
, (3.45) 

F (y ;α, θ ) = exp 

{ 
−α[ − log (y ) ] 

θ
} 
, 

 ( τ ;α, θ ) = exp 

{ 

−
[
− log (τ ) 

α

] 1 
θ

} 

, (3.46) 

here 0 < y < 1 , while α > 0 and θ > 0 are shape parame-

ers. 

Special cases of the unit-Weibull distributions include the uni- 

orm distribution over the interval (0,1) when α = θ = 1 , the 

ower function distribution when θ = 1 , and the unit-Rayleigh dis- 

ribution when θ = 2 . 

Note that α nor θ have a direct interpretation in terms of 

he observed data. For example, α is no longer a scale param- 

ter as in the distribution of X . However, from the expression 
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Fig. 17. Plots of the re-parameterized PDF stated from (3.45) for indicated values of μ, θ and τ . 
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efined in (3.46) , the parameter α can be re-parameterized as 

= h −1 (μ) = − log (τ ) / [ − log (μ)] 
θ

, such that μ is, for a fixed and

nown value τ , the 100 τ th quantile of the distribution of Y . Plots

f the re-parameterized unit-Weibull PDF for several values μ, θ
nd τ are given in Fig. 17 . The PDF can assume different shapes 

decreasing, increasing, unimodal, anti-unimodal) according to the 

alues of its parameters. 

In [85] , three real-world data sets were analyzed for illustra- 

ive and model comparison purposes. The first application was re- 

ated to the rate of recovery of stem cells; the second one was 

n the access of families to the supply of piped water in Brazil- 

an cities in the Southeast and Northeast regions; and the third 

ne was based on cost effectiveness of risk management. For these 

ata sets, the unit-Weibull quantile regression model outperformed 

he Kumaraswamy and beta models according to three information 

riteria [124] . 

A Hausdorff approximation of the Heaviside step function was 

tudied in [47] by a family of the unit-Weibull cumulative sig- 

oids. In [39] , two new families were proposed: the unit ex- 

ended Weibull and complementary unit extended Weibull distri- 

utions. In [90] , three approaches were presented for bias reduc- 

ion of the ML estimators of the unit-Weibull distribution parame- 

ers. The first approach is the analytical methodology suggested in 

24] ; the second one is based on parametric bootstrap resampling 
t

18 
ethod; and the third one is the preventive approach introduced 

n [33] . Motivated by the presence of zeros or ones in proportion 

esponses, an extension of the unit-Weibull quantile regression for 

he interval [0,1) or (0,1] was proposed in [89,91] . They assumed 

hat the continuous mechanism is described by a re-parameterized 

nit-Weibull distribution, while the discrete component is a degen- 

rate distribution in a known value c either zero or one. Under this 

pproach, the PDF and CDF of the inflated unit-Weibull distribution 

n c is given by 

 ( y ;ν, μ, θ, τ ) = 

{
ν, if y = c;
( 1 − ν) f ( y ;μ, θ, τ ) , if y ∈ ( 0 , 1 ) ;

(3.47) 

 ( y ;ν, μ, θ, τ ) = νI c ( y ) + ( 1 − ν) F ( y ;μ, θ, τ ) ; (3.48) 

here I A (y ) is the indicator function above mentioned, whereas 

∈ (0 , 1) is a mixture parameter, and f (y ;μ, θ, τ ) , F (y ;μ, θ, τ )

re the PDF and CDF of the re-parameterized unit-Weibull distri- 

ution. Notice that the random variable Y follows a unit-Weibull 

istribution with probability 1 − ν and it follows a degenerate dis- 

ribution in c with probability ν . 



J. Mazucheli, B. Alves, A.F.B. Menezes et al. Computer Methods and Programs in Biomedicine 221 (2022) 106816 

Fig. 18. Plots of the re-parameterized PDF stated from (4.49) for indicated values of μ, θ and τ . 
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. Parametric quantile regressions for continuous positive and 

iscrete responses 

In this section, we discuss and present quantile regressions 

or continuous positive and discrete responses. For these distribu- 

ions, the literature on parametric quantile regression formulated 

y the re-parameterization approach is scarce. We cite the mod- 

ls based on the continuous Birnbaum-Saunders [3,15,73,110,111] , 

exible Weibull [103] , logistic Nadarajah-Haghighi [100] , and log- 

ymmetric [72,114] distributions, as well as the discrete generalized 

alf-normal distribution [34,38] . 

The main characteristics of these distributions are presented 

rom the next subsection. However, although not discussed in this 

aper, we can also mention the quantile regression model based on 

he gamma-sinh-Cauchy distribution [37] , generalized gamma dis- 

ribution [97,98] and asymmetric Laplace distribution [129] . Note 

hat we do not present the characteristics of these distributions 

ince their respective regression models are not formulated from 

e-parameterizations, as it happens with all the others distribu- 

ions discussed in this paper. 

.1. The Birnbaum-Saunders distribution 

Let Y be a Birnbaum-Saunders distributed random variable. 

hen, the corresponding PDF, CDF and QF of Y are given, respec- 
19 
ively, by 

f (y ;α, θ ) = 

1 

2 θα
√ 

2 π

[(
α

y 

) 1 
2 + 

(
α

y 

) 3 
2 

]
exp 

[ 
− 1 

2 θ2 

(
y 

α
+ 

α

y 
− 2 

)] 
, (4.49) 

F (y ;α, θ ) = �

{
1 

θ

[(
y 

α

) 1 
2 −

(
α

y 

) 1 
2 

]}
, 

(τ ;α, θ ) = 

α

4 

[ 
θ�−1 (τ ) + 

√ 

θ2 �−1 (τ ) 2 + 4 

] 2 
, (4.50) 

here y > 0 , α > 0 is a scale parameter, and θ > 0 is a shape

arameter. The mean and variance of Y are stated, respectively, as 

(Y ) = α(1 + θ2 / 2) and Var (Y ) = (αθ ) 2 (1 + 5 / 4 θ2 ) . 

Note that we can easily assess the effect of covariates on 

he mean of the distribution of Y through some appropri- 

te link function [68,71] . However, in many situations, model- 

ng the effect of covariates on quantiles of the response can 

e also of interest. From the expression defined in (4.50) , 

e may re-parameterize α in terms of the 100 τ th quantile, 

∈ (0 , 1) namely, as α = h −1 (μ) = 4 μ/ [ θ�−1 (τ ) + (θ2 �−1 (τ ) 2 +
) 1 / 2 ] 2 . This re-parameterization was considered in [110,111] . A 

eostatistical model based on a new approach to quantile regres- 
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Fig. 19. Plots of the re-parameterized PDF stated from (4.51) for indicated values of μ, θ and τ . 

Fig. 20. Plots of the re-parameterized PDF stated from (4.57) for indicated values of μ and τ . 
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ion considering the Birnbaum-Saunders distribution was derived 

n [70,35] . 

.2. The flexible Weibull distribution 

The flexible Weibull distribution [11] has two parameters: α > 

 and θ > 0 . A flexible Weibull distributed random variable Y has 

DF, PDF and QF given by 

f (y ;α, θ ) = 

(
θ + 

α

y 2 

)
exp 

[ (
θy − α

y 

)
− exp 

(
θy − α

y 

)] 
, (4.51) 
d

20 
F (y ;α, θ ) = 1 − exp − exp θy −
y 

, 

(τ ;α, θ ) = 

ξ + 

√ 

ξ 2 + 4 θα

2 θ
, (4.52) 

here y > 0 , ξ = log [ − log ( 1 − τ ) ] and θ > 0 , α > 0 are shape

arameters. 

To study the relationship between the response variable and 

ovariates in survival studies, a re-parameterization in terms of 

he median was introduced in [103] , so that a re-parameterization 

n terms of all quantiles can be considered. From the expression 

efined in (4.52) , the parameter α may be re-parameterized as 
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= h −1 (μ) = [(2 μθ − ξ ) 2 − ξ 2 ] / (4 θ ) , such that μ is, for a fixed

nd known value τ , the 100 τ th quantile of the distribution of 

 . A quantile regression model and its diagnostic analytics for 

 Weibull distributed response with applications to engineering 

roblems was presented in [112] . 

.3. The logistic Nadarajah-Haghighi distribution 

The logistic Nadarajah-Haghighi model [100] is suitable to de- 

cribe random variables with positive support, such as time fail- 

res. It is derived by inserting the Nadarajah-Haghighi distribution 

94] as the baseline model in the logistic-X class [121] of distri- 

utions. Let Y be a logistic Nadarajah-Haghighi distributed random 

ariable. Then, the corresponding PDF, CDF and QF of Y are written, 

espectively, as 

f (y ;α, θ, δ) = 

αθδ( 1 + αy ) 
θ−1 
[
( 1 + αy ) 

θ − 1 

]δ−1 { 
1 + 

[
( 1 + αy ) 

θ − 1 

]δ} 2 , (4.53) 

F (y ;α, θ, δ) = 

[
( 1 + αy ) 

θ − 1 

]δ
1 + 

[
( 1 + αy ) 

θ − 1 

]δ , 

(τ ;α, θ, δ) = 

1 

α

{ [
1 + 

(
τ

1 − τ

) 1 
δ

] 1 
θ

− 1 

} 

, (4.54) 

here y > 0 , α > 0 is the rate parameter and θ > 0 , δ > 0

re shape parameters. For the parameter θ , the logistic Nadarajah- 

aghighi family of models contains as one of its members to the 

ogistic-exponential case. If δ = 1 , we have the Lomax distribution 

s particular case. If U has a standard uniform distribution, then 

(U) has PDF given by (4.53) . 

A parametric regression model for right-censored data was con- 

tructed in [100] based on a median re-parmeterization of the lo- 

istic Nadarajah-Haghighi distribution. For that purpose, they re- 

arameterized the formula given in (4.53) in terms of the median, 

enoted by μ, which is obtained by setting τ = 0 . 5 in the expres-

ion stated in (4.54) and then α = (1 / μ)(2 1 /θ − 1) . 

.4. The class of log-symmetric distributions 

The family of log-symmetric models [72,114,122] comprises sev- 

ral members that are generally used in the description of contin- 

ous, strictly positive and asymmetric data. This family also ac- 

ommodates the possibility to model bimodal and/or light and 

eavy-tailed data. Log-symmetric distributions are obtained from 

he transformation Y = exp (X ) , where X ∼ S(α, θ ) , which denotes 

 symmetric distributed random variable [114] . The corresponding 

DF, CDF and QF of Y are defined, respectively, as 

f ( y ;α, θ ) = 

ξ√ 

θy 
f g 

{ 
1 

θ
[ log ( y ) − log ( α) ] 

2 
} 
, (4.55) 

F ( y ;α, θ ) = F g 

(
1 

θ
[ log ( y ) − log ( α) ] 

2 
)
, 

 ( τ ;α, θ ) = α exp 

(√ 

θz τ

)
, (4.56) 

here y > 0 , α > 0 is the scale parameter, θ > 0 is

he power parameter, f g is the PDF generator kernel possibly 

ssociated with an additional parameter ϑ (or parameter vec- 

or ϑ ), ξ is a normalizing constant, with F g (w ) = ξ
∫ w 

−∞ 

g(z 2 )d z

nd z τ = F −1 
g (τ ) being the 100 τ th quantile of a symmet- 

ic distribution. Some members of the log-symmetric family 

f distributions obtained from different f g stated in (4.55) are 
21 
he extended Birnbaum-Saunders, extended Birnbaum-Saunders- 

, log-contaminated-normal, log-hyperbolic, log-normal, log-power- 

xponential, log-slash, and log-Student-t cases. From the expres- 

ion defined in (4.56) , the parameter α can be re-parameterized 

s α = h −1 (μ) = μ/ exp (θ1 / 2 z τ ) , such that μ is, for a fixed and

nown value τ , the 100 τ th quantile of the distribution of Y . This

trategy was used in [114] . 

.5. The discrete generalized half-normal distribution 

The discrete generalized half-normal model [86] is obtained 

rom the transformation Y = P (X = k ) = S X (k ) − S X (k + 1) , where

 X denotes the survival function of a random variable X , where X ∼
HN (α, θ ) , which denotes a generalized half-normal distributed 

andom variable [21] . The corresponding probability mass function, 

DF and QF of the discrete generalized half-normal distribution, for 

 random variable Y , are formulated, respectively, as 

f (y ;α, θ ) = 2 

{
�

[(
y + 1 

α

)θ
]

− �

[(
y 

α

)θ
]}

, (4.57) 

F (y ;α, θ ) = 2�

[ (
 y + 1 � 
α

)θ
] 

− 1 , 

(τ ;α, θ ) = 

⌊
α

[
�−1 

(
τ + 1 

2 

) 1 
θ

]
− 1 

⌋
, (4.58) 

here y ∈ { 0 , 1 , . . . } and 
 a � denotes the floor function (integer

art) of the number a ∈ R . The r-th moment of Y is given by 

 ( Y r ) =2 

∞ ∑ 

k =0 

y r �

{
�

[(
y + 1 

α

)θ
]

−�

[(
y 

α

)θ
]}

, r ∈ { 1 , 2 , . . . } . 

(4.59) 

From the expression defined in (4.59) , note that the mean 

oes not appear expressed in a closed form allowing simple re- 

arameterization. However, based on [34] , considering τ = 0 . 5 in 

4.58) , we can re-parameterize α as 

= h 

−1 ( μ) = 

1 + μ

0 . 6745 

1 /θ
, 

uch that μ is the median of the distribution of Y . 

A median regression model of the discrete generalized half- 

ormal was applied in [34] to the healthcare and compared with 

hree other models: Poisson, negative binomial and generalized 

oisson. A second application was considered with data on auto- 

obile insurance rate-making, in which the model was compared 

ith the Poisson and negative binomial models. These applications 

howed that the discrete generalized half-normal model provided 

 better fit than the other models considered. 

. Regression, model fitting, computational implementation, 

nd applications 

In this section, we describe, for the two-parameters distribu- 

ions presented previously, the general ML estimation method in 

 similar manner as for generalized linear models. In addition, 

e introduce some details regarding the unitquantreg pack- 

ge used for parameters estimation, as well as model selection 

nd diagnostics. The models use a parametric regression approach 

here both location and shape parameters of the conditional dis- 

ribution of the response are described employing covariates. The 

nitquantreg package is implemented in the framework of the 

tats::lm package. Therefore, most methods and packages that 

tilize this structure are also applied to it. Package and vignette 

re available from the GitHub at 
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ntreg’’) 

reg package can be fitted. 

5

 } , is modeled considering the observed values x i = (1 , x i 1 , . . . , x ip ) 
� and 

z shape parameters of the conditional distribution of the response. We 

a  μ and θ ( μ is, for a fixed τ , the 100 τ th quantile of Y and θ is the 

s ved values y = (y 1 , . . . , y n ) 
� from the vector of n independent random 

v d as 

g (5.60) 

a

g (5.61) 

w vely. Furthermore, consider that Y i | x i , z i ∼ F (y i ;μi , θi ) , where F is the 

C  strictly monotonic, twice differentiable functions that map the 100 τ th 

q choices of g 1 are the following link functions used in generalized linear 

m ard normal (probit link); (iii) minimum extreme-value (complementary 

l  Cauchy (Cauchit link). Furthermore, the shape parameter θi must be 

p r square-root links [88] . It is important to note that x and z can be 

i

the first-order and second-order partial derivatives of the logarithm of 

t i , y i namely, with i ∈ { 1 , . . . , n } , the log-likelihood function is given by 

� e defined as 

f s a (p + 1) × 1 parameter vector associated with a covariate matrix 

X ssociated with a covariate matrix Z n ×(q +1) . Considering the full log- 

l ctively, as 

w

W
1 

1 

, . . . , 
∂θn 

∂ζn 

]
, ˙ � δ = 

[
∂� 

∂θ1 

, . . . , 
∂� 

∂θn 

]� 
. 

a

w

� , �̈ μδ = 

[
∂ 2 � 

∂ μ1 ∂ δ1 

, . . . , 
∂ 2 � ( �) 

∂ μn ∂ δn 

]
. 

5

ed, for instance, through general-purpose optimization algorithms as 

N he optim function of the stats package of R [106] ; see [23] for a 

s eters for a class of regression models. In the study performed in [23] , 

t IRECT_L , evolutionary, genetic, memetic, particle swarm, self-adapted 

e using the Monte Carlo simulation method with the R software. In that 

s volutionary, simulated annealing, stochastic ranking evolutionary, and 

c the best performance). The optim function failed in most cases, but 

w ers. The annealing algorithm obtained satisfactory estimates in viable 

t tim function it fails. 
https://github.com/AndrMenezes/unitquantreg 

and may be downloaded and installed via 

devtools::install_github(’’AndrMenezes/unitqua
A full view of the package may be reached from the link 

https://andrmenezes.github.io/unitquantreg/index.html 

Lastly, we illustrate how the models residing in the unitquant

.1. Regression modeling 

Suppose that the response Y i , for 0 < Y i < 1 , with i ∈ { 1 , . . . , n
 i = (1 , z i 1 , . . . , z iq ) 

� of the covariate vectors of both location and 

re interested in evaluating the effects of these covariates on both

hape parameter). For ML parameter estimation, we have the obser

ariables Y = (Y 1 , . . . , Y n ) 
� . Then, let us assume the equations state

 1 (μi ) = ηi = β0 + β1 x i 1 + · · · + βp x ip 

nd 

 2 ( θi ) = ζi = δ0 + δ1 z i 1 + · · · + δq z iq , 

hich relate μi and θi to the linear predictions ηi and ζi , respecti

DF of a two-parameter distribution. We assume that g 1 and g 2 are

uantile μi and θi to the line of real numbers [29] p. 228]. Suitable 

odels [87] : (i) the inverse CDF of the logistic (logit link); (ii) stand

og-log link); (iv) maximum extreme-value (log-log link); and (v)

ositive and the link function g 2 is, for example, the logarithm o

dentical or they could be subsets of each other. 

To obtain the ML estimates of the model parameters, we need 

he corresponding likelihood function. For the observed response 

 i = � i ( �) = log [ f ( y i ;�, x i , z i , τ ) ] , such that the score equations ar

∂� i 

∂β j 

= 

∂� i 

∂μi 

∂μi 

∂ηi 

∂ηi 

∂β j 

, 
∂� i 

∂δ j 

= 

∂� i 

∂θi 

∂θi 

∂ζi 

∂ζi 

∂δ j 

, 

or j ∈ { 1 , . . . , (p + 1) } and � = ( β, δ) , where β = (β0 , . . . , βp ) i

 n ×(p+1) and δ = (δ0 , . . . , δq ) is a (q + 1) × 1 parameter vector a

ikelihood function, we have the score vectors for � written, respe

∂� 

∂ β
= X 

� diag 
(
W μ

)
˙ � μ, 

∂� 

∂ δ
= Z 

� diag ( W δ ) ̇ � δ, 

here diag is an n × n diagonal matrix, 

 μ = 

[
∂μ1 

∂η1 

, . . . , 
∂μn 

∂ηn 

]
, ˙ � μ = 

[
∂� 

∂μ1 

, . . . , 
∂� 

∂μn 

]� 
, W δ = 

[
∂θ

∂ζ

For the Hessian matrix, we have the expressions stated as 

∂ 2 � 

∂ β∂ β
� = X 

� diag 
(
�̈ μμ

)
diag 

(
W 

2 
μ

)
X , 

∂ 2 � 

∂ δ∂ δ
� = Z 

� diag 
(
�̈ δδ
)
diag 

(
W 

2 
δ

)
Z 

nd 

∂ 2 � 

∂ β∂ δ
� = X 

� diag 
(
�̈ μδ

)
diag 

(
W μ

)
diag ( W δ ) Z 

here 

¨
 μμ = 

[
∂ 2 � 

∂ μ1 ∂ μ1 

, . . . , 
∂ 2 � 

∂ μn ∂ μn 

]
, �̈ δδ = 

[
∂ 2 � 

∂ δ1 ∂ δ1 

, . . . , 
∂ 2 � 

∂ δn ∂ δn 

]
.2. Computational implementation 

The ML estimates ( ̂  β0 , . . . , ̂
 βp ) and ( ̂  δ0 , . . . , ̂

 δq ) can be obtain

elder-Mead, quasi-Newton and conjugate-gradient available in t

tudy on ten computational algorithms in the estimation of param

he controlled random search, differential evolutionary, DIRECT , D
volutionary, and simulated annealing methods were evaluated by 

tudy, four algorithms presented satisfactory results (differential e

ontrolled random search algorithms, with the latter one having 

hen it was successful, it is more accurate and faster than the oth

ime with few failures so that we recommend its use when the op
22 

https://github.com/AndrMenezes/unitquantreg
https://andrmenezes.github.io/unitquantreg/index.html
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 unitquantreg package. The quantile regression models fitted by 

u erbolic Weibull, (ii) Johnson SB, (iii) Kumaraswamy, (iv) log-extended 

e -XII, (vii) unit-Chen, (viii) unit-Gompertz, (ix) unit-Gumbel, (x) unit- 

l  generalized half-normal. These 13 distributions implemented in the 

u of R , where names of CDF, PDF, QF and random generation functions 

f or example, for the unit-Weibull distribution, we define: 

 coded in C++ using the Rcpp package [30,31] . The main function of 

t milarly to the functions lm() , glm() , betareg() , simplexreg() , 
g

[132] , the regression model can be specified via an R package named 

F  stated as in (5.60) and (5.61) , we define formula = y ~ x1 + x2 | 
z  covariates z1 and z2 being related to the shape parameter. Without 

t ote that, for g 1 given in (5.60) , we have the four options: 

’cauchit’’) , 
w

) . 
bject named unitquantreg , such as for the generic functions coef , 

p in the unitquantreg class are listed: 

method using the optimx package [96] , which is a general-purpose 

o ization, including the existing optim function [23] . The main ad- 

v f different optimization methods and providing sanity checks. The 

u ment , handles the fitting process and its default values are: 

w dient , which control the optimx whether it should use the analytical 

H  all available distributions, the Hessian matrices and the score vectors 

a ation performance. Starting values for the vector parameter β may be 

u rom the quantile regression model, where the response is defined as 

y . 

d to obtain the starting values. For δ j , with j ∈ { 1 , . . . , q } , the initial 

v r the inverse and square roots link functions. The standard errors (SEs) 

a which is computed from the inverse of the analytical Hessian matrix 

i  matrix is calculated using a Cholesky decomposition. 

hm converged. If it fails, the warning message “optimization failed to 

c rthermore, the Karush–Kuhn–Tucker optimality conditions are checked 

b is not satisfied, then a warning message is also printed. The package 

c full rank, but it has at least one negative eigen-value. 

ment, and the following names can used for its members: 
As mentioned, to obtain the ML estimates, we developed the

nitquantreg take the baseline distributions: (i) arcsecant hyp

xponential-geometric, (v) unit-Birnbaum-Saunders, (vi) unit-Burr

ogistic, (xi) unit-Weibull, and (xii-xiii) two versions of the unit

nitquantreg package follow the standard naming convention 

ollow the d , p , q , and r prefixes, as it is usual in the R software. F

These and all other d , p , q , and r functions are vectorized and

he unitquatreg package, unitquantreg() namely, works si

amlss() , cdfquantreg() as follows: 

In the same way, for example, in the simplexreg package 
ormula [131] . Thus, to specify both quantile and shape equations

1 + z2 , where y ~ x1 + x2 specifies the quantile model with

he latter part, the model formula = y ~ x1 + x2 is fitted. N

link = c(’’logit’’, ’’probit’’, ’’cloglog’’, ’
hile for g 2 given in (5.61) , we have the options: 

link.theta = c(’’log’’, ’’sqrt’’, ’’identity’’
Methods for extracting information from the returned S3 class o

rint , plot and summary , are available. Next, the methods with

In particular, the model parameters are estimated by the ML 

ptimization wrapper function that calls other R tools for optim

antage of optimx is to unify the tools allowing a number o

nitquantreg.control command , behind the control argu

hereas its two most important arguments are: hessian and gra
essian matrices and the analytical score vectors, respectively. For

re implemented in C++ for more accurate estimates and comput

ser-supplied, otherwise the starting values for β are estimated f

 

∗
i 

= g 1 (y i ) , being g 1 the link function for the quantile parameter μ
The rq function from the quantreg package [56] is employe

alues are setting as 0.1 for the logarithm link function, and 1.1 fo

re obtained employing the observed Fisher information matrix, 

mplemented in C++ . For numerical stability, the inverse of Hessian

The uniquantreg function checks if the optimization algorit

onverge” is printed and the user must be care about the results. Fu

y the optimx::optimx function. If some of these conditions 

omputes the Moore-Penrose inverse if the final Hessian matrix is 

The distribution of the response is defined by the family argu
23 
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Table 1 

Summary of univariate statistics for bodyfat data set. 

Variable (by level) Mean SD Min Max Q1 Q2 Q3 CS CK 

arms 0.266 0.111 0.042 0.547 0.181 0.261 0.344 0.157 -0.772 

arms (by F) 0.340 0.087 0.119 0.547 0.282 0.338 0.407 -0.096 2.414 

arms (by M) 0.191 0.078 0.042 0.418 0.136 0.188 0.242 0.361 2.793 

arms (by A) 0.236 0.113 0.042 0.490 0.143 0.219 0.321 0.382 2.185 

arms (by I) 0.283 0.094 0.074 0.488 0.225 0.290 0.344 0.096 2.716 

arms (by S) 0.324 0.100 1.132 0.547 0.244 0.329 0.405 0.139 2.152 

age 46.000 19.879 18.000 87.000 25.000 47.000 65.000 0.158 -1.359 

bmi 24.716 3.151 18.500 29.900 22.300 24.900 27.200 -0.101 -0.943 

where F: female, M: male, A: active, I: insufficiently active, S: sedentary, SD: standard deviation, CS: coefficient of skewness, CK: coefficient of variation, Q i : i th quartile, 

with i ∈ { 1 , 2 , 3 } 

Table 2 

Spearman correlation coefficient (with the corresponding p-value under the null 

hypothesis H 0 : ρ = 0 ) for the indicated variables. 

Variable bmi age 

arms 0.381 ( < 0.001) 0.464 ( < 0.001) 

bmi 0.470 ( < 0.001) 

al quantile (QQ) plots with simulated envelopes [94] for the Cox-Snell 

a ntile residual [29] is defined by ̂  r i = �−1 [ F (y i ; ̂ μi , ̂
 θi )] , for i ∈ { 1 , . . . , n } . 

I ard normal distribution. In addition, stating ̂  r i = − log [1 − F (y i ; ̂ μi , ̂
 θi )] , 

w y of the Cox-Snell residual is that if the model selected fits the data 

a

tion criteria are available by the functions vuong.test() and 

l signed to implement the Vuong test when comparing non-nested mod- 

e -based information criteria [44,115,124,2] for model diagnostics. 

5

hat was also analyzed in [77] . This data set contains 298 observations 

a pital in Curitiba, Paraná, Brazil. The fat percentages at android, arms, 

g data set is composed of two continuous and two categorical covariates. 

C dex (bmi, in kg/m 

2 ) of the individuals, while the categorical covariates 

a ently active or sedentary patient). As described in [12] , the ipaq is a 

q pent on physical activities of moderate and strong intensity, in different 

c nd work, as well as the time spent in passive activities performed on 

t e unitquantreg::bodyfat . The four first rows of this dataframe 

a

w  46.00 (the average age) and sex and ipaq are, as mentioned, categorical 

v

us variables in bodyfat data set. Tables 1 and 2 , respectively, report 

u rman correlation coefficients for these variables. Figure 21 shows his- 

t ote that the response has a symmetric empirical distribution between 

0 f the family of models proposed in our R package. Also, observe that all 

t , the significant correlations between the response and the continuous 

c odel. However, on the other hand, the significant correlation between 

b d when the regression models are stated. 

 the covariates and the body fat at arms through 13 quantile regression 

m ionship between μi , θi and the linear predictors are given by 

l cientlyactive i + β5 ipaqactive i ;
Model diagnostics, including theoretical quantile versus empiric

nd normalized quantile residuals are available. The normalized qua

f the model is correctly specified, then ̂

 r i has an approximate stand

e have the estimated Cox-Snell residuals. The important propert

dequately, ̂  r i follows the standard exponential distribution. 

Methods to compare two fitted models and model selec

ikelihood_stats() , respectively. The vuong.test() was de

ls [125] , while likelihood_stats() has a variety of likelihood

.3. Biomedical application I with Brazilian data 

Next, we consider a real-world data set first reported in [102] t

bout body fat percentage of individuals assisted in a public hos

ynecoid, legs, and body correspond to the five responses, and the 

ontinuous covariates refer to the age (in years) and body mass in

re related to gender (female or male) and ipaq (active, insuffici

uestionnaire that allows us to obtain data about the weekly time s

ontexts of daily life, such as: housework, leisure, transportation, a

he seating position. The bodyfat data set is stored in the datafram

re presented as: 

here bmi is centered at 24.72 (the average bmi), age is centered at

ariables with two and three levels, respectively. 

Now, we present an exploratory data analysis for all continuo

nivariate descriptive statistics for each variable and pairwise Spea

ograms and scatter-plots for the variables: arms, age and bmi. N

.042 and 0.547, which can be well modeled by several members o

he correlations are statistically significant at 1% . On the one hand

ovariates bmi and age support the formulation of a regression m

mi and age could indicate a collinearity problem which is analyze

In what follows, we explore the functional relationship between

odels. For a fixed τ = 0 . 5 , let us assume that the functional relat

ogit (μi ) = β0 + β1 bmi i + β2 age i + β3 sexmale i + β4 ipaqinsuffi

log (θ ) = δ0 ;
i 

24 
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Fig. 21. Histograms and scatter-plots for bodyfat in arms data set. 

w  for “sex = female; “ipaqinsufficientlyactive = 1 is employed for “ipaq 

= = sedentary, whereas “ipaqactive = 1 is used for “ipaq = active and 

“ ilable models, we can use, for example, 

w e lists contains 23 objects ( ? unitquantreg::unitquantreg for 

m

here “sexmale = 1 is utilized for “sex = male and “sexmale = 0

 insufficiently active and “ipaqinsufficientlyactive = 0 for “ipaq 

ipaqactive = 0 for “ipaq = sedentary. To simultaneously fit all ava

hich creates a list for each of the distributions and each of thes

ore details) named as: 
25 
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ackage, the ML estimates, the SEs of their corresponding estimators for 

t tained using the following instructions: 
Considering all distributions available in the unitquantreg p
he parameters, and the p-values of the associated tests, can be ob
26 
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l, similar values are obtained in terms of significance at 5%, only the 

K e in the covariate “ipaq (insufficiently active)”. 

mputes and reports various statistics to indicate how well the esti- 

m LogLike = −2 log (L ) , AIC = −2 log (L ) + 2 p [2] , BIC = −2 log (L ) + p log (n ) 

[ re, respectively, the maximized likelihood function, the sample size and 

t AIC, BIC and HQIC indicate the Akaike, Bayesian, and Hannan-Quinn in- 

f l, when you are comparing candidate models, smaller Neg2LogLike, AIC, 

B etails on likelihood-based statistics for model selection, we recommend 

[

ts , then it returns: 

on the unit-Birnbaum-Saunders distribution is the best model that fits 

t

From the above results reported for all the models, in genera

umaraswamy and unit-Chen models have a slightly different valu

For model selection, the function likelihood_stats() co

ated model fits the data. We consider the following criteria: Neg2

115] and HQIC = −2 log (L ) + 2 p log [ log (n )] [44] , where L , n and p a

he number of model parameters estimated, whereas the acronyms 

ormation criteria, respectively; see more details in [124] . In genera

IC and HQIC statistics indicate a better fitting model. For further d

17,20] . 

If likelihood_stats(lt = fits) is applied to the list fi

According to the values of these statistics, the structure based 

he bodyfat data set. 
27 
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Table 3 

Coefficient of determination ( R 2 ) for bodyfat data set. 

Distribution R 2 

unit-logistic 0.7773 

unit-Birnbaum-Saunders 0.7751 

unit-Gumbel 0.7715 

log-extended exponential-geometric 0.7678 

Johnson-SB 0.7689 

arc-secant hyperbolic Weibull 0.7641 

unit-Gompertz 0.7558 

unit-Weibull 0.7578 

unit-generalized half-normal-E 0.7465 

unit-generalized half-normal-X 0.7323 

Kumaraswamy 0.7219 

unit-Chen 0.6967 

unit-Burr-XII 0.5202 

ile regression model, we must evaluate the possible collinearity prob- 

l d often used approach to measuring correlation between covariates 

i y could exist [104,112] . Note that once we define vcov , terms and 

m  car package [53] , for computing the VIF and detecting multicollinear- 

i

n continue with our quantile regression analysis based on the unit- 

B models consequently. In the unit-Birnbaum-Saunders case, by using 

s

 regression models, we can compute it in the context of parametric 

q  a global measure of explained variation of a model for its response, 

g ood functions for models containing only the intercept and the model 

c tively. Table 3 reports the values of R 2 considering all distributions for 

τ paring competing models that are not necessarily nested, with larger 

v

Before statistically analyzing the unit-Birnbaum-Saunders quant

em detected in the exploratory data analysis. A more formal an

s the variance inflation factor (VIF). If VIF > 10 , then collinearit

odel.matrix , we can employ the vif function, available in the

ty. For the unit-Birnbaum-Saunders model, we have: 

Therefore, as all the VIF values are less than 10, then we ca

irnbaum-Saunders distributions; otherwise, we should refit the 

ummary(fits[[5]]) , we obtain: 

Analogously to the coefficient of determination R 2 in ordinary

uantile regression [25,32,95,112] . This coefficient is considered as

iven by R 2 = 1 − [ L 0 /L p+ q ] 2 /n , where L 0 and L p+ q denote the likelih

ontaining the intercept, plus a number of p + q covariates, respec

= 0 . 5 . Like the AIC and BIC statistics, R 2 is most helpful for com

alues indicating better models. 
28 
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n is very flexible and allows us to use regression splines, through the 

n  addition, one might want to look at the gam() function of the mgcv 
p for example [8,45,101] . To permit for non-linearity in the covariate age 

a

 generate, as in the hnp package [93] , the QQ (half-normal) plot with 

s siduals; see Figure 22 . From this figure, we observe the good agreement 

b nd the bodyfat data set. Then, once again, we can continue with our 

q  distribution; otherwise, we should refit the models consequently. The 

s sing the Cox-Snell residual is as follows: 

lot = TRUE, output = TRUE, 
cox-snell’’),...) 
 46 years old, body mass index equal to 24.72 kg/m 

2 and sedentary. 

T have a positive effect on the percentage of fat in the arms. In contrast, 

t g that this percentage is less for insufficiently active and active men, 

r  parameters in a fitted model, we use confint(fits[[5]]) , which 

r

It is important to point out that the unitquantreg() functio

s() function, which is available in the splines package of R . In
ackage [128] , which is distributed with R . For further details, see 

nd the unit-Birnbaum-Saunders distribution, we can consider: 

To graphically assess the adequacy of the fitted model, we can

imulated envelopes using the Cox-Snell and normalized quantile re

etween the unit-Birnbaum-Saunders quantile regression model a

uantile regression analysis based on the unit-Birnbaum-Saunders

yntax to generate the half-normal plot with simulated envelopes u

> hnp(object, nsim = 99, halfnormal = TRUE, p
level = 0.95, resid.type = c(’’quantile’’, ’’
Observe that the value of ̂ β0 is the estimate for a female with

he parameter estimates for β1 and β2 indicate that age and bmi 

he parameters β3 , β4 and β5 are negatively estimated, indicatin

espectively. To compute 95% confidence intervals for one or more

eturns: 
29 
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Fig. 22. QQ (half-normal) plots with a simulated envelope of quantile residuals with Brazilian data. 
30 
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e corresponding values for the odds themselves by exponentiating the 

v that: 

130] , such as coeftest , coefci , lrtest , waldtest , reset , can 

b These methods show the flexibilidade of this package for: (i) testing a 

r nctional structure is reasonable or not. For example: 

r e funcional form, respectively. 

Saunders one, for example) for various values of τ , with 0 < τ < 1 , 

j C QUANTREG procedure [113] , as follows: 

w ientlyactive i + β5 ipaqactive i 
a n coefficients, we suggest see [65] Ch. 7]. Note that plot(fitubs) 
w For an overview of all functions available in unitquantreg , use 

l tion is being restructured to fit models with responses augmented by 

z

Point and interval estimates are more helpful if converted to th

alues. In the case of the unit-Birnbaum-Saunders model, we have 

Notice that some methods available in the lmtest package [

e applied to an object created by the unitquantreg function. 

estricted model versus a full model and (ii) verifying whether a fu

eturns the likelihood ratio test and Ramsey RESET test [107] for th

Lastly, we may fit a particular distribution (the unit-Birnbaum-

ust like in the quantreg package [56] , as well as in the SAS PRO

here logit (μi ) = β0 + β1 age i + β2 bmi i + β3 sex i + β4 ipaqinsuffic

nd log (θi ) = δ0 + δ1 bmi i . For interpretation of estimated regressio

orks as the plot.rqs function of the quantreg package. 

s(’’package:unitquantreg’’) . The unitquantreg func

eros, ones, or zeros and ones, as in [88] . 
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Table 4 

Summary table of univariate statistics for COVID-19 data set. 

Variable Mean SD Min Max Q1 Q2 Q3 Skew Kurt 

RR 0.975 0.032 0.820 0.999 0.968 0.988 0.997 -2.158 5.220 

RR(30) 0.997 0.004 0.981 1.000 0.997 0.998 0.999 -2.454 5.203 

RR(90) 0.974 0.030 0.862 0.999 0.971 0.985 0.992 -2.087 4.064 

RR(180) 0.955 0.036 0.820 0.994 0.940 0.966 0.978 -1.648 2.906 

PD 203.901 265.612 1.286 1,215.198 44.809 107.784 219.942 2.211 4.485 

GINI 0.452 0.018 0.419 0.499 0.440 0.453 0.466 0.134 -0.481 

BEDS 2.600 0.710 1.600 4.800 2.100 2.450 3.100 0.969 0.564 

SR 0.173 0.035 0.089 0.260 0.149 0.172 0.193 0.274 -0.111 

PR 0.132 0.028 0.076 0.201 0.107 0.132 0.151 0.455 -0.388 

LE 78.696 1.785 74.800 82.300 77.800 79.100 79.900 -0.483 -0.426 

Table 5 

Spearman correlation coefficient (with the corresponding p-value under the null hypothesis H 0 : ρ = 0 ) for the indicated variables. 

Variable PD GINI BEDS SR PR LE 

RR −0.364 ( < 0.001) −0.310 ( < 0.001) 0.031 (0.709) 0.060 (0.466) −0.002 (0.806) −0.010 (0.902) 

PD 0.549 ( < 0.001) −0.242 (0.003) −0.295 ( < 0.001) −0.076 (0.357) 0.182 (0.026) 

GINI 0.033 (0.686) 0.061 (0.455) 0.519 ( < 0.001) −0.106 (0.198) 

BEDS 0.666 ( < 0.001) 0.308 ( < 0.001) −0.518 ( < 0.001) 

SR 0.628 ( < 0.001) −0.889 ( < 0.001) 

PR −0.678 ( < 0.001) 

ext subsection is not to present all numerous approaches to variable 

s eter interpretation, but rather suggest the use of the unitquatreg 
p

5 ted States 

08] , available at https://github.com/tatianefribeiro/RUBXII _ Regression _ 

C ry rate (RR) (1-mortality rates ) across the 50 US states as the response 

v

l  β6 LE i + β7 T90 + β8 T180 i , (5.62) 

w Gini coefficient in 2017; BEDS is the hospital beds per 100 thousand 

i is the poverty rate in 2020; LE is the life expectancy in 2018; T90 is 

a s to recovery rate after 90 days of the 10th confirmed case, and zero 

o if the response corresponds to recovery rate after 180 days of the 10th 

c

les and for RR measured in the three periods (30, 90, and 180 days). 

T hows histograms and scatter-plots for the variables RR, PD, GINI, BEDS, 

S ric empirical distribution between 0.820 and 0.999, which can be well 

m ur R package. Also, on the one hand, observe that the response variable 

i variates PD and GINI, so that the other covariates could be discarded 

f ficant correlation that could indicate multicollinearity problems, which 

i

s: 
It is important to emphasize that the objective of this and n

election, regression diagnostics, link function selection or param

ackage for quantile regression. 

.4. Biomedical application II with COVID-19 recovery rates in the Uni

In this example, we consider the data set extracted from [1

OVID-19/tree/master . Different from [108] , we consider the recove

ariable and the following model is fitted: 

ogit (μi ) = β0 + β1 PD i + β2 GINI i + β3 BEDS i + β4 SR i + β5 PR i +

here PD is the population density (p/mi 2 ) in 2020; GINI is the 

nhabitants in 2018; SR is the smoking rate by state in 2020; PR 

 dummy variable that is equal to one if the response correspond

therwise; whereas T180 is a dummy variable that is equal to one 

onfirmed case, and zero otherwise. 

Table 4 reports the descriptive measures for continuous variab

able 5 presents the Spearman correlation coefficients. Figure 23 s

R, PR, and LE. Note that the response has a leptokurtic, asymmet

odeled by several members of the family of models proposed in o

s only correlated statistically at a significant level of 1% to the co

rom the model. On the other hand, some covariates present signi

s analyzed when the regression models are stated. 

We fit all available models simultaneously, for τ = 0 . 5 , as follow
32 
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Fig. 23. Histograms and scatter-plots for COVID-19 data set. 
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meters, and the p-values of the associated tests, can be obtained using 

t

to what happened with the Brazilian data set, the results obtained in 

t d to be somewhat distinct among the models. Then, we conduct an 
ML estimates, SEs of their corresponding estimators for the para

he following instructions: 

From the above results reported for all the models, differently 

erms of significance at 5% for the COVID-19 data set are reporte
34 
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Table 6 

Coefficient of determination ( R 2 ) for COVID-19 data set. 

Distribution R 2 

unit-Gompertz 0.8029 

unit-logistic 0.7984 

Johnson-SB 0.7786 

unit-generalized half-normal-X 0.7722 

unit-Gumbel 0.7709 

arc-secant hyperbolic Weibull 0.7702 

unit-Chen 0.7702 

unit-Weibull 0.7689 

unit-Burr-XII 0.7680 

unit-generalized half-normal-E 0.7644 

unit-Birnbaum-Saunders 0.7616 

log-extended exponential-geometric 0.7570 

Kumaraswamy 0.7372 

a = fits) , we have the values of the likelihood-based statistics given 

b

w t model according to each of the likelihood-based statistics. This model 

s in Figure 24 . Once again, we can consider the measure R 2 as a criterion 

f attributing the best fit (highest value) to the unit-Gompertz quantile 

r

etween LE and SR is high. Because correlation coefficients only show 

p ariates are collinear and should be dropped before starting the analyses. 

T

tic potentially amount of collinearity. In this example, the VIF score for 

t respectively; so that we must pay attention on these covariates. To find 

a e variable at a time, recalculate the VIF values, and repeat this process 

u  be sure no collinearity problems could be present. Then, we consider 

t le regression models: 
nalysis for model selection. By using likelihood_stats(lt 
y: 

hich indicates that the unit-logistic quantile regression is the bes

election analysis is supported by a residual graphical study shown 

or comparison between all models. Table 6 reports these results 

egression. 

To fit a full unit-logistic model, we have: 

From Table 5 , we can observe that the correlation coefficient b

airwise correlations, once again, we use the VIF to assess what cov

he resulting VIF values are given below: 

As mentioned, a VIF value that exceeds 10 indicates a problema

he predictor variables SR and LE are VIF = 6.989 and VIF = 6.791, 

 set of covariates that does not contain collinearity, we remove on

ntil all VIF values are enough small, for example, less than five to

he following scenarios for restricted (reduced) unit-logistic quanti

• Reduced unit-logistic model 1 [excluding the covariate SR] 

• Reduced unit-logistic model 2 [excluding the covariate LE] 
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Fig. 24. QQ (half-normal) plots with a simulated envelope of quantile residuals for COVID-19 data set. 

d LE] 
• Reduced unit-logistic model 3 [excluding the covariates SR an

The VIF values for these models are given, respectively, by 
36 
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compare the fit of the full unit-logistic model with the reduced models 

t

lly significant difference at 5% between the four models. We decide 

t ply the exponential function to the 95% confidence limits obtaining: 

en by: 
Note that all reduced models (1-3) have small VIF. Now, we can 

hrough the likelihood ratio test as follows: 

From these results, we can conclude that there is no practica

o use Model 3 due to the principle of parsimony. Then, we ap

The estimates of the parameters of Model 3, for τ = 0 . 5 , are giv
37 
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om the exploratory data analysis which indicated that, at a significant 

l esent in the model. Therefore, the fit of the new model built with only 

t

te of recoveries when all covariates were null. The estimate for the 

p  the rate of recoveries, that is, in US states with a large number of 

h mates for the parameters β1 , β2 and β4 have a negative effect on the 

r h higher population density, Gini index and poverty rate. Likewise, ̂ β5 

a at the time after the 10th confirmed case is detrimental to the rate of 

r

Note that the final model is consequent with the conjectures fr

evel of 1% , only the covariates PD, GINI, T90 and T180 should be pr

he significant variables is given by: 

For the case with all covariates, the value ̂ β0 indicates the ra

arameter β3 reports that hospital beds have a positive effect on

ospital beds, the rate of recoveries is higher. In contrast, the esti

ate of recoveries, indicating that this rate is less for US states wit

nd 

̂ β6 are negative, with 

̂ β6 being less than 

̂ β5 , which indicates th

ecovery. 
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. Concluding remarks 

The quantile regression methodology provides a framework 

or modeling the relationship between an outcome or response 

ariable and explanatory variables or covariates using conditional 

uantile functions. This methodology not only offers a more ro- 

ust alternative to estimate the central tendency of the response 

ut also allows a more detailed exploration of its conditional dis- 

ribution for different quantiles. Applications of quantile regression 

rose in many research areas, ranging from ecology over genetics 

o economics [13] , but only in the last decade have been works 

hat investigate a parametric approach. 

This paper presented a new computational package imple- 

ented in the R software, two biomedical applications, one of 

hem with COVID-19 data, and an up-to-date review of the 

arametric quantile regression models obtained re-parameterizing 

 distribution in terms of a quantile. We described the main 

haracteristics of several distributions used to model continu- 

us variables bounded to the unit interval (based on the ex- 

onentiated arcsech-normal, generalized half-normal, generalized 

ohnson SB, Johnson-Student-t, Lambert-uniform, log-extended 

xponential-geometric, power Johnson SB, Kumaraswamy, L- 

ogistic, transmuted unit-Rayleigh, unit-Birnbaum-Saunders, unit- 

ur-XII, unit-Chen, unit-Gompertz, unit-half-normal, unit-Weibull, 

nd Vasicek distributions), four for non-negative continuous re- 

ponses (based on the Birnbaum-Saunders, flexible Weibull, logis- 

ic Nadarajah-Haghighi, and log-symmetric families), and one for 

iscrete responses (based on the discrete generalized half-normal 

istribution). 

For the distributions on the unit interval that are more flexible 

n terms of the behavior of its probability density function, an R 
ackage is available, mainly for parameter estimation and model 

hecking. We showed how to apply the methods and functions 

ontained in the package through two applications in biomedi- 

al data. Future versions of the package will focus on extending 

he support interval to include zero-inflation, one-inflation or zero- 

ne-inflation quantile regression. Please note that that the com- 

utational implementation of zero-or-one augmented is straight- 

orward since the likelihood function factorizes in two terms: one 

epending on the discrete component and another one depend- 

ng on continuous component. Thus, in the R software, one can 

se the stats::glm() function to estimate the discrete com- 

onent and the uniquantreg::uniquantreg() function to 

stimate the continuous component. In the next version of the 

niquantreg package, we are planning to add a wrapper func- 

ion to estimate and infer in augmented unit quantile regression 
odels. s

Table A1 

Parameter estimates for Brazilian body fat data set. 

Coefficients 

Distribution Intercept age bmi 

ashw -0.476 0.005 0.082 

johnsonsb -0.470 0.005 0.092 

kum -0.530 0.004 0.082 

leeg -0.450 0.005 0.093 

ubs -0.485 0.004 0.086 

uburrxii -0.506 0.004 0.053 

uchen -0.283 0.007 0.114 

ughne -0.481 0.005 0.072 

ughnx -0.504 0.004 0.080 

ugompertz -0.362 0.006 0.104 

ugumbel -0.438 0.006 0.092 

ulogistic -0.475 0.005 0.089 

uweibull -0.494 0.005 0.077 

non-parametric -0.469 0.005 0.083 
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ppendix: Comparison with non-parametric quantile 

egressions 

Although outside the scope of this paper, in this appendix, 

e present the parameter estimates, for both data sets consid- 

red in the applications (Brazilian and COVID-19 data sets), con- 

idering the standard quantile regression model introduced in [57] . 

hese estimates are obtained using the rq function available in 

he quantreg package of R . Once the response variable is on the 

0,1) interval, the fit is carried out considering its logit transfor- 

ation; see, for example, [14,127] . Table A.7 reports the parameter 

stimates considering the Brazilian body fat data set. For the data 

et related to COVID-19, estimates are in Table A.8 . From these re- 

ults, in general, no major differences are observed between the 

stimates obtained by the parametric and non-parametric method- 

logies. Note that the coefficients of determination R 2 for the 

tandard quantile regression model introduced in [56] were of 
sexmale ipaqinsufficiently active ipaqactive 

-0.898 -0.125 -0.332 

-0.938 -0.117 -0.263 

-0.820 -0.076 -0.216 

-0.957 -0.131 -0.257 

-0.895 -0.115 -0.242 

-0.565 -0.083 -0.160 

-1.138 -0.138 -0.387 

-0.833 -0.135 -0.382 

-0.799 -0.098 -0.227 

-1.057 -0.148 -0.385 

-0.970 -0.130 -0.354 

-0.932 -0.122 -0.239 

-0.863 -0.121 -0.320 

-0.950 -0.153 -0.220 
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Table A2 

Parameter estimates for COVID-19 data set. 

Coefficients 

Distribution Intercept PD GINI BEDS SR PR LE T90 T180 

ashw 12.640 -0.002 -15.385 0.195 -7.259 0.597 0.016 -1.907 -2.571 

johnsonsb -2.609 -0.002 -17.179 0.040 2.229 6.124 0.199 -2.000 -2.833 

kum -6.101 -0.002 -19.044 -0.182 7.253 11.745 0.234 -1.845 -2.275 

leeg -3.900 -0.002 -19.499 -0.074 5.816 8.403 0.219 -2.285 -2.724 

ubs -7.154 -0.002 -17.267 0.056 0.563 9.176 0.256 -2.019 -2.891 

uburrxii 12.591 -0.002 -15.207 0.196 -7.288 0.569 0.016 -1.899 -2.563 

uchen 12.525 -0.002 -15.281 0.194 -7.202 0.584 0.017 -1.902 -2.566 

ughne 17.455 -0.002 -14.542 0.251 -10.927 -1.044 -0.042 -1.840 -2.456 

ughnx -28.798 -0.002 -23.392 -0.222 8.718 25.610 0.533 -2.190 -3.208 

ugompertz 9.963 -0.002 -19.182 0.118 -3.551 0.283 0.070 -2.235 -2.827 

ugumbel 12.535 -0.002 -15.336 0.194 -7.167 0.538 0.017 -1.909 -2.573 

ulogistic 0.468 -0.002 -16.621 0.042 2.344 5.274 0.157 -2.032 -2.825 

uweibull 12.563 -0.002 -15.246 0.195 -7.245 0.580 0.017 -1.899 -2.564 

non-parametric 13.171 -0.002 -14.829 0.154 -3.711 3.527 -0.001 -2.229 -2.859 
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8.8% and 81.3%, respectively, when employing the Brazilian and 

OVID-19 data sets, respectively, which are slightly greater than 

he corresponding maximal values of the parametric quantile re- 

ressions, that is, 77.7% (unit-logistic model) and 77.5% (unit- 

irnbaum-Saunders model) for the Brazilian body fat data set; and 

0.3% (unit-Gompertz model) and 79.8% (unit-logistic model) for 

he COVID-19 data set. 
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