
Solutions to APTS Statistical Computing
Assessment 2022/23

André F. B. Menezes, Maynooth University

January 27, 2023

1 Introduction

This report contains my solutions for the APTS Statistical Computing Assessment from
2022/23. The assignment is to develop an R function for efficiently and stably fitting a gen-
eralised linear model (GLM) with a one-parameter exponential family observation model. We
will first derive an appropriate algorithm, then implement it, and test it for the important
special case of logistic regression. Further details can be found here.

A one-parameter exponential family model with canonical parameter 𝜃 has a density (or mass
function) of the form

𝑓(𝑦 ∣ 𝜃) = exp {𝜃𝑦 − 𝑏(𝜃) + 𝑐(𝑦)}
where 𝑏(⋅) and 𝑐(⋅) are known scalar functions.

In a GLM the linear predictor 𝜂 = X𝛽 is related to the model canonical parameter, 𝜃, thought
a convenience link function, where 𝛽 is a 𝑝-dimensional regression parameters and X is an
𝑛 × 𝑝 design matrix with known values. Moreover, we will denote the y = (𝑦1, … , 𝑦𝑛) as the
𝑛-dimensional vector of observations.

2 Developed solution

First, we need to write the log-likelihood function in matrix form. Let be 𝜃𝑖 = x⊤
𝑖•𝛽 and

x𝑖• = (𝑥𝑖0, 𝑥𝑖1, … , 𝑥𝑖(𝑝−1)), then the log-likelihood for 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝−1), up to a constant,

1

https://warwick.ac.uk/fac/sci/statistics/apts/students/resources-2122/assessment2122.pdf

is given by

ℓ(𝛽) =
𝑛

∑
𝑖=1

𝜃𝑖 𝑦𝑖 −
𝑛

∑
𝑖=1

𝑏(𝜃𝑖)

=
𝑛

∑
𝑖=1

x⊤
𝑖•𝛽 𝑦𝑖 −

𝑛
∑
𝑖=1

𝑏(x⊤
𝑖•𝛽).

We can use the summing vector, 1⊤ = (1, … , 1) to express a sum of a number in matrix
notation, hence the log-likelihood can be re-written as follows

ℓ(𝛽) = y⊤ X𝛽 − 1⊤ 𝑏(X𝛽)

where now 𝑏(⋅) is a 𝑝-dimensional vectorised function.

To obtain the gradient and Hessian matrix we first, need to note that the log-likelihood can
be written as

𝑛
∑
𝑖=1

x⊤
𝑖•𝛽 𝑦𝑖 = x⊤

1•𝛽 𝑦1 + … + x⊤
𝑛•𝛽 𝑦𝑛

= (𝑥10, 𝑥11, … , 𝑥1(𝑝−1)) (𝛽0, … , 𝛽𝑝−1) 𝑦1 + … + (𝑥𝑛0, 𝑥𝑛1, … , 𝑥𝑛(𝑝−1)) (𝛽0, … , 𝛽𝑝−1) 𝑦𝑛

Then, it’s straightforward to derive the derivative for 𝛽𝑘 as

𝜕
𝜕 𝛽𝑘

ℓ(𝛽) =
𝑛

∑
𝑖=1

𝑥𝑖𝑘 𝑦𝑖 −
𝑛

∑
𝑖=1

𝑏′(x⊤
𝑖•𝛽) 𝑥𝑖𝑘

=
𝑛

∑
𝑖=1

[𝑦𝑖 − 𝑏′(x⊤
𝑖•𝛽] 𝑥𝑖𝑘

for 𝑘 = 1, … , 𝑝
Then, the score vector can be defined as follows:

Δℓ(𝛽) = 𝜕
𝜕𝛽 ℓ(𝛽) = X⊤ [y − 𝑏′(X𝛽)]

Concerning the Hessian matrix, note that the diagonal elements are given by:

𝜕2

𝜕𝛽2
𝑘

ℓ(𝛽) = −
𝑛

∑
𝑖=1

𝑏′′(x⊤
𝑖•𝛽) 𝑥2

𝑖𝑘, 𝑘 = 1, … , 𝑝.

And the off-diagonal terms are all zero, i.e.,

2

𝜕2

𝜕𝛽𝑗 𝛽2
𝑘

ℓ(𝛽) = 0, 𝑗 ≠ 𝑘, 𝑗, 𝑘 = 1, … , 𝑝.

Therefore, the Hessian matrix can be expressed as

Δ2ℓ(𝛽) = H(𝛽) = −X⊤ diag(𝜔) X
where, 𝜔 = 𝑏′′(X𝛽).
Given a initial parameter guess 𝛽(0) = (𝛽(0)

0 , 𝛽(0)
1 , … , 𝛽(0)

𝑝−1) the Newton-Raphson (NR) update
schema is given by

𝛽(𝑘+1) = 𝛽(𝑘) − H−1 (𝛽(𝑘)) Δ(𝛽(𝑘)).

For the one parameter exponential family model we can write the schema as

𝛽(𝑘+1) = 𝛽(𝑘) + [X⊤ diag(𝜔𝑘) X]−1 X⊤ [y − 𝑏′(X 𝛽𝑘)]
= 𝛽(𝑘) + [X⊤ diag(w𝑘) X]−1 X⊤ z𝑘

where w𝑘 = 𝑏′′(X 𝛽𝑘) and z𝑘 = y − 𝑏′(X 𝛽𝑘).
We can write the NR update in a more efficient computational form by the defining X𝑘 =
diag {w𝑘}1/2 X. Consider the QR decomposition of X𝑘 = Q𝑘 R𝑘, such that R𝑘 is an upper
triangular 𝑛 × 𝑝 matrix and Q𝑘 has the same dimension of X_k with orthogonal columns, so
Q⊤

𝑘 Q𝑘 = I𝑛×𝑝. Also, note that diag {w𝑘} = diag {w𝑘}1/2 diag {w𝑘}1/2, then the NR update
can be set up as:

𝛽(𝑘+1) = 𝛽(𝑘) + [X⊤ diag(w𝑘)1/2 diag(w𝑘)1/2 X]−1 X⊤ z𝑘

= 𝛽(𝑘) + [X⊤ diag(w𝑘)1/2 X𝑘]−1 X⊤ z𝑘

= 𝛽(𝑘) + [X⊤ diag(w𝑘)1/2 Q𝑘 R𝑘]−1 X⊤ z𝑘

= 𝛽(𝑘) + R−1
𝑘 Q−1

𝑘 [diag(w𝑘)]−1/2 (X⊤)−1 X⊤ z𝑘

= 𝛽(𝑘) + R−1
𝑘 Q⊤

𝑘 [diag(w𝑘)]−1/2 z𝑘.

Since diag(w𝑘) is a 𝑛 × 𝑝 diagonal matrix and z𝑘 is a 𝑝 × 1 vector we can write the matrix
multiplication as a Hadamard (elementwise) product, which is more computational efficient.
It turns out that

𝛽(𝑘+1) = 𝛽(𝑘) + R−1
𝑘 Q⊤

𝑘 [w−1/2
𝑘 ∘ z𝑘]

𝛽(𝑘+1) − 𝛽(𝑘) = R−1
𝑘 Q⊤

𝑘 [w−1/2
𝑘 ∘ z𝑘]

R𝑘 (𝛽(𝑘+1) − 𝛽(𝑘)) = Q⊤
𝑘 [w−1/2

𝑘 ∘ z𝑘] .

3

The following function glm1 gives an implementation of the NR schema to estimate the parame-
ters of a one-parameter exponential family generalised linear model. The function does not per-
form matrix inversion. Note that the left hand side of NR update is upper triangular, because
of the R𝑘 matrix, then the backsolve function can be use in order to efficient solve a triangu-
lar system of linear equations. The termination criterion is defined as max ∣𝛽(𝑘) − 𝛽(𝑘+1)∣ < 𝜖,
where 𝜖 = 10−6. The function returns a data.frame with the estimates parameter for each
iteration until reach the termination criterion.

glm1 <- function(y, X, bp, bpp) {

p <- NCOL(X)
beta_k <- rep(0, p)
list_beta <- list()
stop_error <- 1e-6
j <- 1L
current_error <- 1

while (current_error > stop_error) {
eta_k <- X %*% beta_k
z_k <- y - bp(eta_k)
w_k <- bpp(eta_k)
X_k <- drop(w_k^(1/2)) * X
wz_k <- w_k^(-1/2) * z_k
qr_out <- qr(X_k)
Q_k <- qr.Q(qr_out)
R_k <- qr.R(qr_out)
a_k <- backsolve(R_k, crossprod(Q_k, wz_k))

Update the parameter
list_beta[[j]] <- a_k + beta_k
current_error <- max(abs(beta_k - list_beta[[j]]))
beta_k <- list_beta[[j]]
j <- j + 1L

}

do.call(cbind, list_beta)
}

Regarding the Bernoulli GLM with probability mass function given by

𝑓(𝑦 ∣ 𝑝) = 𝑝𝑦 (1 − 𝑝)1−𝑦, 𝑦 ∈ 0, 1.

4

Its p.m.f. can be written in the one-parameter exponential family as follows

𝑓(𝑦 ∣ 𝑝) = exp {𝑦 log 𝑝 + (1 − 𝑦) log(1 − 𝑝)}
= exp {𝑦 log 𝑝 − 𝑦 log(1 − 𝑝) + log(1 − 𝑝)}

= exp {𝑦 log (𝑝
1 − 𝑝) + log(1 − 𝑝)} .

By defining 𝜃 = log (𝑝
1 − 𝑝) it turns out that

𝑒𝜃 = 𝑝
1 − 𝑝 → 𝑒𝜃 − 𝑝 𝑒𝜃 = 𝑝 → 𝑝 = 𝑒𝜃

1 + 𝑒𝜃

and
1 − 𝑝 = 1 − 𝑒𝜃

1 + 𝑒𝜃 = 1 + 𝑒𝜃 − 𝑒𝜃

1 + 𝑒𝜃 = 1
1 + 𝑒𝜃 .

Hence,

𝑓(𝑦 ∣ 𝑝) = exp {𝑦 𝜃 + log [1
1 + 𝑒𝜃]}

= exp {𝑦 𝜃 − log (1 + 𝑒𝜃)}

where 𝑏(𝜃) = log (1 + 𝑒𝜃).

Therefore,

d
d 𝜃 𝑏(𝜃) = 𝑒𝜃

1 + 𝑒𝜃 = 1
1 + 𝑒−𝜃

d2

d 𝜃2 𝑏(𝜃) = (−1) (−𝑒−𝜃) (1 + 𝑒−𝜃)−2 𝑒𝜃

1 + 𝑒𝜃 = 𝑒−𝜃

(1 + 𝑒−𝜃)2 .

Finally, a user friendly function, logReg, which call the glm1 is built to fit a logistic regression
model.

logReg <- function(formula, data) {
mf <- model.frame(formula, data = data)
y <- model.response(mf)
if (is.factor(y))

y <- as.numeric(y) - 1
X <- model.matrix(formula, mf)
bp <- function(theta) 1 / (1 + exp(-theta))
bpp <- function(theta) {

e <- exp(-theta)

5

e / (1 + e)^2
}
glm1(y, X, bp, bpp)

}

In order to cross-check the estimated regression coefficients computed by glm1 and the R’s
built-in glm function two examples are provided. First, I simulated 500 samples from a
logistic regression model with two covariates, where the true values of the coefficients are
𝛽 = (1.0, −0.5, 0.5) and the covariates were simulated from standard Normal and uniform
random variables as follows.

set.seed(69)
n <- 500
X <- cbind(1, rnorm(n), runif(n))
betas <- c(1, -0.5, 0.5)
eta <- drop(X %*% betas)
p <- 1 / (1 + exp(-eta))
y <- rbinom(n, size = 1, prob = p)
sim_data <- data.frame(y = y, x1 = X[, 2], x2 = X[, 3])

The estimated coefficients from logReg and glm are identical at seven decimal places.

out_logReg <- logReg(formula = y ~ x1 + x2, data = sim_data)
out_glm <- glm(formula = y ~ x1 + x2, data = sim_data, family = "binomial")
cbind(true = betas,

logReg = out_logReg[, ncol(out_logReg)],
glm = coef(out_glm))

true logReg glm
(Intercept) 1.0 1.0698941 1.0698941
x1 -0.5 -0.5386558 -0.5386558
x2 0.5 0.5473424 0.5473424

The second cross-checks uses the data Pima.tr from MASS package. Again, the estimated values
are identical at nine decimal places for all parameters. Therefore, those examples showed that
the glm1 function is successful implemented.

out_logReg <- logReg(type ~ ., data = MASS::Pima.tr)
out_glm <- glm(type ~ ., data = MASS::Pima.tr, family = "binomial")

6

cbind(logReg = out_logReg[, ncol(out_logReg)],
glm = coef(out_glm))

logReg glm
(Intercept) -9.773061533 -9.773061533
npreg 0.103183427 0.103183427
glu 0.032116823 0.032116823
bp -0.004767542 -0.004767542
skin -0.001916632 -0.001916632
bmi 0.083623912 0.083623912
ped 1.820410367 1.820410367
age 0.041183529 0.041183529

7

	Introduction
	Developed solution

