Skip to contents

Density function, distribution function, quantile function and random number generation function for the unit-Birnbaum-Saunders distribution reparametrized in terms of the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

Usage

dubs(x, mu, theta, tau = 0.5, log = FALSE)

pubs(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

qubs(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

rubs(n, mu, theta, tau = 0.5)

Arguments

x, q

vector of positive quantiles.

mu

location parameter indicating the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

theta

nonnegative shape parameter.

tau

the parameter to specify which quantile is to be used.

log, log.p

logical; If TRUE, probabilities p are given as log(p).

lower.tail

logical; If TRUE, (default), \(P(X \leq{x})\) are returned, otherwise \(P(X > x)\).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Value

dubs gives the density, pubs gives the distribution function, qubs gives the quantile function and rubs generates random deviates.

Invalid arguments will return an error message.

Details

Probability density function $$f(y\mid \alpha ,\theta )=\frac{1}{2y\alpha \theta \sqrt{2\pi }}\left[\left( -\frac{\alpha }{\log (y)}\right) ^{\frac{1}{2}}+\left( -\frac{\alpha}{\log (y)}\right) ^{\frac{3}{2}}\right] \exp \left[ \frac{1}{2\theta ^{2}}\left( 2+\frac{\log (y)}{\alpha }+\frac{\alpha }{\log (y)}\right) \right]$$

Cumulative distribution function $$F(y\mid \alpha ,\theta )=1-\Phi \left\{ \frac{1}{\theta }\left[ \left( -\frac{\log (y)}{\alpha }\right) ^{\frac{1}{2}}-\left( -\frac{\alpha }{\log(y)}\right) ^{\frac{1}{2}}\right] \right\}$$

Quantile function $$Q\left( \tau \mid \alpha ,\theta \right) ={\exp }\left\{ -{\frac{2\alpha}{2+\left[ {\theta }\Phi ^{-1}\left( 1-\tau \right) \right] ^{2}-{\theta } \Phi ^{-1}\left( 1-\tau \right) \sqrt{4+\left[ {\theta }\Phi ^{-1}\left(1-\tau \right) \right] ^{2}}}}\right\}$$

Reparameterization $$\alpha=g^{-1}(\mu )=\log \left( \mu \right) g\left( \theta ,\tau \right)$$ where \(g\left( \theta ,\tau \right) =-\frac{1}{2}\left\{ 2+\left[ {\theta }\Phi^{-1}\left( 1-\tau \right) \right] ^{2}-{\theta }\Phi ^{-1}\left( 1-\tau\right) \sqrt{4+{\theta }\Phi ^{-1}\left( 1-\tau \right) }\right\} .\)

References

Birnbaum, Z. W. and Saunders, S. C., (1969). A new family of life distributions. Journal of Applied Probability, 6(2), 637--652. Mazucheli, J., Menezes, A. F. B. and Dey, S., (2018). The unit-Birnbaum-Saunders distribution with applications. Chilean Journal of Statistics, 9(1), 47--57.

Mazucheli, J., Alves, B. and Menezes, A. F. B., (2021). A new quantile regression for modeling bounded data under a unit Birnbaum-Saunders distribution with applications. Simmetry, (), 1--28.

Author

Josmar Mazucheli jmazucheli@gmail.com

André F. B. Menezes andrefelipemaringa@gmail.com

Examples

set.seed(123)
x <- rubs(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by =  0.01)
hist(x, prob = TRUE, main = 'unit-Birnbaum-Saunders')
lines(S, dubs(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)

plot(ecdf(x))
lines(S, pubs(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)

plot(quantile(x, probs = S), type = "l")
lines(qubs(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)