Skip to contents

Density function, distribution function, quantile function and random number generation function for the unit-Chen distribution reparametrized in terms of the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

Usage

duchen(x, mu, theta, tau = 0.5, log = FALSE)

puchen(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

quchen(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

ruchen(n, mu, theta, tau = 0.5)

Arguments

x, q

vector of positive quantiles.

mu

location parameter indicating the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

theta

nonnegative shape parameter.

tau

the parameter to specify which quantile is to be used.

log, log.p

logical; If TRUE, probabilities p are given as log(p).

lower.tail

logical; If TRUE, (default), \(P(X \leq{x})\) are returned, otherwise \(P(X > x)\).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Value

duchen gives the density, puchen gives the distribution function, quchen gives the quantile function and ruchen generates random deviates.

Invalid arguments will return an error message.

Details

Probability density function $$f(y\mid \alpha ,\theta )=\frac{\alpha \theta }{y}\left[ -\log (y)\right]^{\theta -1}\exp \left\{ \left[ -\log \left( y\right) \right]^{\theta}\right\} \exp \left\{ \alpha \left\{ 1-\exp \left[ \left( -\log (y)\right)^{\theta }\right] \right\} \right\}$$

Cumulative distribution function $$F(y\mid \alpha ,\theta )=\exp \left\{ \alpha \left\{ 1-\exp \left[ \left(-\log (y)\right)^{\theta }\right] \right\} \right\}$$

Quantile function $$Q\left( \tau \mid \alpha ,\theta \right) =\exp \left\{ -\left[ \log \left( 1-{\frac{\log \left( \tau \right) }{\alpha }}\right) \right]^{\frac{1}{\theta}}\right\}$$

Reparameterization $$\alpha=g^{-1}(\mu )={\frac{\log \left( \tau \right) }{1-\exp \left[ \left( -\log (\mu )\right)^{\theta }\right]}}$$

References

Korkmaz, M. C., Emrah, A., Chesneau, C. and Yousof, H. M., (2020). On the unit-Chen distribution with associated quantile regression and applications. Journal of Applied Statistics, 44(1) 1--22.

Author

Josmar Mazucheli jmazucheli@gmail.com

André F. B. Menezes andrefelipemaringa@gmail.com

Examples

set.seed(123)
x <- ruchen(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by =  0.01)
hist(x, prob = TRUE, main = 'unit-Chen')
lines(S, duchen(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)

plot(ecdf(x))
lines(S, puchen(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)

plot(quantile(x, probs = S), type = "l")
lines(quchen(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)