Skip to contents

Density function, distribution function, quantile function and random number generation function for the unit-Half-Normal-E distribution reparametrized in terms of the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

Usage

dughne(x, mu, theta, tau = 0.5, log = FALSE)

pughne(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

qughne(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

rughne(n, mu, theta, tau = 0.5)

Arguments

x, q

vector of positive quantiles.

mu

location parameter indicating the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

theta

nonnegative shape parameter.

tau

the parameter to specify which quantile is to be used.

log, log.p

logical; If TRUE, probabilities p are given as log(p).

lower.tail

logical; If TRUE, (default), \(P(X \leq{x})\) are returned, otherwise \(P(X > x)\).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Value

dughne gives the density, pughne gives the distribution function, qughne gives the quantile function and rughne generates random deviates.

Invalid arguments will return an error message.

Details

Probability density function $$f(y\mid \alpha ,\theta )=\sqrt{\frac{2}{\pi }}\frac{\theta }{y\left[ -\log\left( y\right) \right] }\left( -{\frac{\log \left( y\right) }{\alpha }} \right)^{\theta }\mathrm{\exp }\left\{ -\frac{1}{2}\left[ -{\frac{\log \left( y\right) }{\alpha }}\right]^{2\theta }\right\}$$

Cumulative distribution function $$F(y\mid \alpha ,\theta )=2\Phi \left[ -\left( -{\frac{\log \left( y\right) }{\alpha }}\right)^{\theta }\right]$$

Quantile function $$Q(\tau \mid \alpha ,\theta )=\exp \left\{ -\alpha \left[ -\Phi^{-1}\left(\frac{\tau }{2}\right) \right]^{\frac{1}{\theta }}\right\}$$

Reparameterization $$\alpha=g^{-1}(\mu )=-\log \left( \mu \right) \left[ -\Phi^{-1}\left( \frac{\tau }{2}\right) \right]^{-\frac{1}{\theta }}$$

References

Korkmaz, M. C., (2020). The unit generalized half normal distribution: A new bounded distribution with inference and application. University Politehnica of Bucharest Scientific, 82(2), 133--140.

Author

Josmar Mazucheli jmazucheli@gmail.com

André F. B. Menezes andrefelipemaringa@gmail.com

Examples

set.seed(123)
x <- rughne(n = 1000, mu = 0.5, theta = 2, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by =  0.01)
hist(x, prob = TRUE, main = 'unit-Half-Normal-E')
lines(S, dughne(x = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)

plot(ecdf(x))
lines(S, pughne(q = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)

plot(quantile(x, probs = S), type = "l")
lines(qughne(p = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)