Skip to contents

Density function, distribution function, quantile function and random number generation for the unit-Logistic distribution reparametrized in terms of the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

Usage

dulogistic(x, mu, theta, tau = 0.5, log = FALSE)

pulogistic(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

qulogistic(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

rulogistic(n, mu, theta, tau = 0.5)

Arguments

x, q

vector of positive quantiles.

mu

location parameter indicating the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

theta

nonnegative shape parameter.

tau

the parameter to specify which quantile is to used.

log, log.p

logical; If TRUE, probabilities p are given as log(p).

lower.tail

logical; If TRUE, (default), \(P(X \leq{x})\) are returned, otherwise \(P(X > x)\).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Value

dulogistic gives the density, pulogistic gives the distribution function, qulogistic gives the quantile function and rulogistic generates random deviates.

Invalid arguments will return an error message.

Details

Probability density function $$f(y\mid \alpha ,\theta )=\frac{\theta \exp \left( \alpha \right) \left(\frac{y}{1-y}\right) ^{\theta -1}}{\left[ 1+\exp \left( \alpha \right)\left( \frac{y}{1-y}\right) ^{\theta }\right] ^{2}}$$

Cumulative distribution function $$F(y\mid \alpha ,\theta )=\frac{\exp \left( \alpha \right) \left( \frac{y}{1-y}\right) ^{\theta }}{1+\exp \left( \alpha \right) \left( \frac{y}{1-y}\right) ^{\theta }}$$

Quantile function $$Q(\tau \mid \alpha ,\theta )=\frac{\exp \left( -\frac{\alpha }{\theta }\right) \left( \frac{\tau }{1-\tau }\right) ^{\frac{1}{\theta }}}{1+\exp\left( -\frac{\alpha }{\theta }\right) \left( \frac{\tau }{1-\tau }\right) ^{ \frac{1}{\theta }}} $$

Reparameterization $$\alpha=g^{-1}(\mu )=\log \left( \frac{\tau }{1-\tau }\right) -\theta \log \left( \frac{\mu }{1-\mu }\right) $$

References

Paz, R. F., Balakrishnan, N. and Bazán, J. L., 2019. L-Logistic regression models: Prior sensitivity analysis, robustness to outliers and applications. Brazilian Journal of Probability and Statistics, 33(3), 455--479.

Author

Josmar Mazucheli jmazucheli@gmail.com

André F. B. Menezes andrefelipemaringa@gmail.com

Examples

set.seed(123)
x <- rulogistic(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by =  0.01)
hist(x, prob = TRUE, main = 'unit-Logistic')
lines(S, dulogistic(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)

plot(ecdf(x))
lines(S, pulogistic(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)

plot(quantile(x, probs = S), type = "l")
lines(qulogistic(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)