Performs Vuong test between two fitted objects of class
unitquantreg
Usage
vuong.test(object1, object2, alternative = c("two.sided", "less", "greater"))
Arguments
- object1, object2
objects of class
unitquantreg
containing the fitted models.- alternative
indicates the alternative hypothesis and must be one of
"two.sided"
(default),"less"
, or"greater"
. You can specify just the initial letter of the value, but the argument name must be given in full. See ‘Details’ for the meanings of the possible values.
Value
A list with class "htest"
containing the following
components:
- statistic
the value of the test statistic.
- p.value
the p-value of the test.
- alternative
a character string describing the alternative hypothesis.
- method
a character string with the method used.
- data.name
a character string ginven the name of families models under comparison.
Details
The statistic of Vuong likelihood ratio test for compare two non-nested regression models is defined by $$T = \frac{1}{\widehat{\omega}^2\,\sqrt{n}}\,\sum_{i=1}^{n}\, \log\frac{f(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\theta}})}{ g(y_i \mid \boldsymbol{x}_i,\widehat{\boldsymbol{\gamma}})}$$ where $$\widehat{\omega}^2 = \frac{1}{n}\,\sum_{i=1}^{n}\,\left(\log \frac{f(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\theta}})}{g(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\gamma}})}\right)^2 - \left[\frac{1}{n}\,\sum_{i=1}^{n}\,\left(\log \frac{f(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\theta}})}{ g(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\gamma}})}\right)\right]^2$$ is an estimator for the variance of \(\frac{1}{\sqrt{n}}\,\displaystyle\sum_{i=1}^{n}\,\log\frac{f(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\theta}})}{g(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\gamma}})}\), \(f(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\theta}})\) and \(g(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\gamma}})\) are the corresponding rival densities evaluated at the maximum likelihood estimates.
When \(n \rightarrow \infty\) we have that \(T \rightarrow N(0, 1)\) in distribution. Therefore, at \(\alpha\%\) level of significance the null hypothesis of the equivalence of the competing models is rejected if \(|T| > z_{\alpha/2}\), where \(z_{\alpha/2}\) is the \(\alpha/2\) quantile of standard normal distribution.
In practical terms, \(f(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\theta}})\) is better (worse) than \(g(y_i \mid \boldsymbol{x}_i, \widehat{\boldsymbol{\gamma}})\) if \(T>z_{\alpha/2}\) (or \(T< -z_{\alpha/2}\)).
References
Vuong, Q. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57(2), 307--333.
Examples
data(sim_bounded, package = "unitquantreg")
sim_bounded_curr <- sim_bounded[sim_bounded$family == "uweibull", ]
fit_uweibull <- unitquantreg(formula = y1 ~ x, tau = 0.5,
data = sim_bounded_curr,
family = "uweibull")
fit_kum <- unitquantreg(formula = y1 ~ x, tau = 0.5,
data = sim_bounded_curr,
family = "kum")
ans <- vuong.test(object1 = fit_uweibull, object2 = fit_kum)
ans
#>
#> Vuong likelihood ratio test for non-nested models (unit-Weibull versus
#> Kumaraswamy)
#>
#> data: unit-Weibull versus Kumaraswamy
#> T_LR = 3.9677, p-value = 7.258e-05
#>
str(ans)
#> List of 4
#> $ statistic: Named num 3.97
#> ..- attr(*, "names")= chr "T_LR"
#> $ p.value : Named num 7.26e-05
#> ..- attr(*, "names")= chr "T_LR"
#> $ method : chr "Vuong likelihood ratio test for non-nested models (unit-Weibull versus Kumaraswamy)"
#> $ data.name: chr "unit-Weibull versus Kumaraswamy"
#> - attr(*, "class")= chr "htest"